Porous hydroxyapatite (HA) scaffoldings are currently used in tissue engineering for bone reconstruction. When this osteoconductive biomaterial is combined with osteoprogenitor cells, it acquires osteoinductive features which accelerate and improve bone formation in vivo. The aim of our study was to assess the mechanical properties of HA-bone complexes undergoing indentation tests, and relate stiffness to composition and structure as examined by micro X-ray. To this purpose, 35-mm tibia diaphyseal resections were performed in sheep. Gaps were filled using porous HA cylinders. Implants were loaded with autologous bone marrow stromal cells (BMSC); cell-free cylinders were used as control. After 8 weeks, bone tissue was found within the internal macropores of cell-loaded HA carriers, and in control implants, bone formation was mostly limited to the outer surface. As assessed by indentation testing the stiffness values of bone-HA composites were halfway between those of HA scaffoldings and tibia bone. Cell-loaded implants were stiffer than cell-free ones. In a cell-loaded implant we also analyzed the variation of stiffness along the main axis of the tibia. (c) 1999 Kluwer Academic Publishers.Borous hydroxyapatite (HA) scaffoldings are currently used in tissue engineering for bone reconstruction. When this osteoconductive biomaterial is combined with osteoprogenitor cells, it acquires osteoinductive features which accelerate and improve bone formation in vivo. The aim of our study was to assess the mechanical properties of HA-bone complexes undergoing indentation tests, and relate stiffness to composition and structure as examined by micro X-ray. To this purpose, 35-mm tibia diaphyseal resections were performed in sheep. Gaps were filled using porous HA cylinders. Implants were loaded with autologous bone marrow stromal cells (BMSC), cell-free cylinders were used as control. After 8 weeks, bone tissue was found within the internal macropores of cell-loaded HA carriers, and in control implants, bone formation was mostly limited to the outer surface. As assessed by indentation testing the stiffness values of bone-HA composites were halfway between those of HA scaffoldings and tibia bone. Cell-loaded implants were stiffer than cell-free ones. In a cell-loaded implant we also analyzed the variation of stiffness along the main axis of the tibia.

Biomechanical evaluation of cell-loaded and cell-free hydroxyapatite implants for the reconstruction of segmental bone defects / P., Chistolini; I., Ruspantini; Bianco, Paolo; Corsi, Alessandro; R., Cancedda; R., Quarto. - In: JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE. - ISSN 0957-4530. - 10:12(1999), pp. 739-742. [10.1023/a:1008939524807]

Biomechanical evaluation of cell-loaded and cell-free hydroxyapatite implants for the reconstruction of segmental bone defects

BIANCO, Paolo;CORSI, ALESSANDRO;
1999

Abstract

Porous hydroxyapatite (HA) scaffoldings are currently used in tissue engineering for bone reconstruction. When this osteoconductive biomaterial is combined with osteoprogenitor cells, it acquires osteoinductive features which accelerate and improve bone formation in vivo. The aim of our study was to assess the mechanical properties of HA-bone complexes undergoing indentation tests, and relate stiffness to composition and structure as examined by micro X-ray. To this purpose, 35-mm tibia diaphyseal resections were performed in sheep. Gaps were filled using porous HA cylinders. Implants were loaded with autologous bone marrow stromal cells (BMSC); cell-free cylinders were used as control. After 8 weeks, bone tissue was found within the internal macropores of cell-loaded HA carriers, and in control implants, bone formation was mostly limited to the outer surface. As assessed by indentation testing the stiffness values of bone-HA composites were halfway between those of HA scaffoldings and tibia bone. Cell-loaded implants were stiffer than cell-free ones. In a cell-loaded implant we also analyzed the variation of stiffness along the main axis of the tibia. (c) 1999 Kluwer Academic Publishers.Borous hydroxyapatite (HA) scaffoldings are currently used in tissue engineering for bone reconstruction. When this osteoconductive biomaterial is combined with osteoprogenitor cells, it acquires osteoinductive features which accelerate and improve bone formation in vivo. The aim of our study was to assess the mechanical properties of HA-bone complexes undergoing indentation tests, and relate stiffness to composition and structure as examined by micro X-ray. To this purpose, 35-mm tibia diaphyseal resections were performed in sheep. Gaps were filled using porous HA cylinders. Implants were loaded with autologous bone marrow stromal cells (BMSC), cell-free cylinders were used as control. After 8 weeks, bone tissue was found within the internal macropores of cell-loaded HA carriers, and in control implants, bone formation was mostly limited to the outer surface. As assessed by indentation testing the stiffness values of bone-HA composites were halfway between those of HA scaffoldings and tibia bone. Cell-loaded implants were stiffer than cell-free ones. In a cell-loaded implant we also analyzed the variation of stiffness along the main axis of the tibia.
1999
01 Pubblicazione su rivista::01a Articolo in rivista
Biomechanical evaluation of cell-loaded and cell-free hydroxyapatite implants for the reconstruction of segmental bone defects / P., Chistolini; I., Ruspantini; Bianco, Paolo; Corsi, Alessandro; R., Cancedda; R., Quarto. - In: JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE. - ISSN 0957-4530. - 10:12(1999), pp. 739-742. [10.1023/a:1008939524807]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/80662
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 53
  • ???jsp.display-item.citation.isi??? 48
social impact