Assume that an operator L1 satisfies a log-Sobolev inequality with parameter on a measure space (X1,μ1), and that another operator L0 satisfies a log-Sobolev inequality (defective or with parameter) on a second measure space (X0,μ0). Then we prove a log-Sobolev inequality (defective or with parameter) for the semi-direct product operator L = L0 + N(x)L1 on the product measure space X1 x X0. Several variants and applications of the results are given in later sections of the paper.
Log-Sobolev inequalities for semi-direct product operators and applications / D'Ancona, Piero Antonio; Pierfelice, Vittoria; Maheux, Patrick. - In: MATHEMATISCHE ZEITSCHRIFT. - ISSN 0025-5874. - STAMPA. - (2016), pp. 103-131.
Log-Sobolev inequalities for semi-direct product operators and applications
D'ANCONA, Piero Antonio;
2016
Abstract
Assume that an operator L1 satisfies a log-Sobolev inequality with parameter on a measure space (X1,μ1), and that another operator L0 satisfies a log-Sobolev inequality (defective or with parameter) on a second measure space (X0,μ0). Then we prove a log-Sobolev inequality (defective or with parameter) for the semi-direct product operator L = L0 + N(x)L1 on the product measure space X1 x X0. Several variants and applications of the results are given in later sections of the paper.File | Dimensione | Formato | |
---|---|---|---|
DAncona_Log-Sobolev-inequalities_2016.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
622.54 kB
Formato
Adobe PDF
|
622.54 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.