Consider a non-negative self-adjoint operator H on L2. We suppose that its heat operator satisfies an off-diagonal algebraic decay estimate, for some exponent p0 between 0 and 2. Then we prove sharp Lp-Lp frequency truncated estimates for the corresponding Schrodinger group, for all p between p0 and p0'. In particular, our results apply to a Laplace operator perturbed by an electromagnetic potential, where the coefficients of the magnetic potential are in L2, while the positive and negative parts of the electric potential are in the local Kato class and in the Kato class, respectively.

Sharp Lp estimates for Schrodinger groups / D'Ancona, Piero Antonio; Nicola, Fabio. - In: REVISTA MATEMATICA IBEROAMERICANA. - ISSN 0213-2230. - STAMPA. - 32:(2016), pp. 1019-1038. [10.4171/RMI/907]

Sharp Lp estimates for Schrodinger groups

D'ANCONA, Piero Antonio
;
2016

Abstract

Consider a non-negative self-adjoint operator H on L2. We suppose that its heat operator satisfies an off-diagonal algebraic decay estimate, for some exponent p0 between 0 and 2. Then we prove sharp Lp-Lp frequency truncated estimates for the corresponding Schrodinger group, for all p between p0 and p0'. In particular, our results apply to a Laplace operator perturbed by an electromagnetic potential, where the coefficients of the magnetic potential are in L2, while the positive and negative parts of the electric potential are in the local Kato class and in the Kato class, respectively.
2016
Schrodinger equation, Schrodinger group, Lp estimates, harmonic analysis
01 Pubblicazione su rivista::01a Articolo in rivista
Sharp Lp estimates for Schrodinger groups / D'Ancona, Piero Antonio; Nicola, Fabio. - In: REVISTA MATEMATICA IBEROAMERICANA. - ISSN 0213-2230. - STAMPA. - 32:(2016), pp. 1019-1038. [10.4171/RMI/907]
File allegati a questo prodotto
File Dimensione Formato  
Dancona_Sharp-Lp-estimates_2016.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 322.79 kB
Formato Adobe PDF
322.79 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/801093
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact