We introduce a class of rotationally invariant manifolds, which we call emph{admissible}, on which the wave flow satisfies smoothing and Strichartz estimates. We deduce the global existence of equivariant wave maps from admissible manifolds to general targets, for small initial data of critical regularity Hn/2. The class of admissible manifolds includes in particular asymptotically flat manifolds and perturbations of real hyperbolic spaces ℍn for n≥3.
Global existence of small equivariant wave maps on rotationally symmetric manifolds / D'Ancona, Piero Antonio; Zhang, Qidi. - In: INTERNATIONAL MATHEMATICS RESEARCH NOTICES. - ISSN 1073-7928. - STAMPA. - 4:(2016), pp. 978-1025. [10.1093/imrn/rnv152]
Global existence of small equivariant wave maps on rotationally symmetric manifolds
D'ANCONA, Piero Antonio;ZHANG, QIDI
2016
Abstract
We introduce a class of rotationally invariant manifolds, which we call emph{admissible}, on which the wave flow satisfies smoothing and Strichartz estimates. We deduce the global existence of equivariant wave maps from admissible manifolds to general targets, for small initial data of critical regularity Hn/2. The class of admissible manifolds includes in particular asymptotically flat manifolds and perturbations of real hyperbolic spaces ℍn for n≥3.File | Dimensione | Formato | |
---|---|---|---|
Dancona_Global-existence_2016.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
460.92 kB
Formato
Adobe PDF
|
460.92 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.