Recent friction experiments carried out under upper crustal P–T conditions have shown that microstructures typical of high temperature creep develop in the slip zone of experimental faults. These mechanisms are more commonly thought to control aseismic viscous flow and shear zone strength in the lower crust/upper mantle. In this study, displacement-controlled experiments have been performed on carbonate gouges at seismic slip rates (1 m s−1), to investigate whether they may also control the frictional strength of seismic faults at the higher strain rates attained in the brittle crust. At relatively low displacements (<1 cm) and temperatures (≤100 ◦C), brittle fracturing and cataclasis produce shear localisation and grain size reduction in a thin slip zone (150 μm). With increasing displacement (up to 15 cm) and temperatures (T up to 600 ◦C), due to frictional heating, intracrystalline plasticity mechanisms start to accommodate intragranular strain in the slip zone, and play a key role in producing nanoscale subgrains (≤100 nm). With further displacement and temperature rise, the onset of weakening coincides with the formation in the slip zone of equiaxial, nanograin aggregates exhibiting polygonal grain boundaries, no shape or crystal preferred orientation and low dislocation densities, possibly due to high temperature (>900 ◦C) grain boundary sliding (GBS) deformation mechanisms. The observed micro-textures are strikingly similar to those predicted by theoretical studies, and those observed during experiments on metals and fine-grained carbonates, where superplastic behaviour has been inferred. To a first approximation, the measured drop in strength is in agreement with our flow stress calculations, suggesting that strain could be accommodated more efficiently by these mechanisms within the weaker bulk slip zone, rather than by frictional sliding along the main slip surfaces in the slip zone. Frictionally induced, grainsize-sensitive GBS deformation mechanisms can thus account for the self-lubrication and dynamic weakening of carbonate faults during earthquake propagation in nature.

Can grain size sensitive flow lubricate faults during the initial stages of earthquake propagation? / De Paola, Nicola; Holdsworth, Robert E.; Viti, Cecilia; Collettini, Cristiano; Bullock, Rachael. - In: EARTH AND PLANETARY SCIENCE LETTERS. - ISSN 0012-821X. - 431:(2015), pp. 48-58. [10.1016/j.epsl.2015.09.002]

Can grain size sensitive flow lubricate faults during the initial stages of earthquake propagation?

COLLETTINI, CRISTIANO;
2015

Abstract

Recent friction experiments carried out under upper crustal P–T conditions have shown that microstructures typical of high temperature creep develop in the slip zone of experimental faults. These mechanisms are more commonly thought to control aseismic viscous flow and shear zone strength in the lower crust/upper mantle. In this study, displacement-controlled experiments have been performed on carbonate gouges at seismic slip rates (1 m s−1), to investigate whether they may also control the frictional strength of seismic faults at the higher strain rates attained in the brittle crust. At relatively low displacements (<1 cm) and temperatures (≤100 ◦C), brittle fracturing and cataclasis produce shear localisation and grain size reduction in a thin slip zone (150 μm). With increasing displacement (up to 15 cm) and temperatures (T up to 600 ◦C), due to frictional heating, intracrystalline plasticity mechanisms start to accommodate intragranular strain in the slip zone, and play a key role in producing nanoscale subgrains (≤100 nm). With further displacement and temperature rise, the onset of weakening coincides with the formation in the slip zone of equiaxial, nanograin aggregates exhibiting polygonal grain boundaries, no shape or crystal preferred orientation and low dislocation densities, possibly due to high temperature (>900 ◦C) grain boundary sliding (GBS) deformation mechanisms. The observed micro-textures are strikingly similar to those predicted by theoretical studies, and those observed during experiments on metals and fine-grained carbonates, where superplastic behaviour has been inferred. To a first approximation, the measured drop in strength is in agreement with our flow stress calculations, suggesting that strain could be accommodated more efficiently by these mechanisms within the weaker bulk slip zone, rather than by frictional sliding along the main slip surfaces in the slip zone. Frictionally induced, grainsize-sensitive GBS deformation mechanisms can thus account for the self-lubrication and dynamic weakening of carbonate faults during earthquake propagation in nature.
2015
dynamic weakening; earthquake; friction; grain boundary sliding; superplasticity; viscous flow; geochemistry and petrology; geophysics; earth and planetary sciences; space and planetary science
01 Pubblicazione su rivista::01a Articolo in rivista
Can grain size sensitive flow lubricate faults during the initial stages of earthquake propagation? / De Paola, Nicola; Holdsworth, Robert E.; Viti, Cecilia; Collettini, Cristiano; Bullock, Rachael. - In: EARTH AND PLANETARY SCIENCE LETTERS. - ISSN 0012-821X. - 431:(2015), pp. 48-58. [10.1016/j.epsl.2015.09.002]
File allegati a questo prodotto
File Dimensione Formato  
De Paola_Can_2015.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.65 MB
Formato Adobe PDF
2.65 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/797945
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 121
  • ???jsp.display-item.citation.isi??? 112
social impact