We introduce a practical partitioning technique designed for parallelizing Position Based Dynamics, and exploiting the ubiquitous multi-core processors present in current commodity GPUs. The input is a set of particles whose dynamics is influenced by spatial constraints. In the initialization phase, we build a graph in which each node corresponds to a constraint and two constraints are connected by an edge if they influence at least one common particle. We introduce a novel greedy algorithm for inserting additional constraints (phantoms) in the graph such that the resulting topology is q-colourable, where ˆ qˆ ≥ 2 is an arbitrary number. We color the graph, and the constraints with the same color are assigned to the same partition. Then, the set of constraints belonging to each partition is solved in parallel during the animation phase. We demonstrate this by using our partitioning technique; the performance hit caused by the GPU kernel calls is significantly decreased, leaving unaffected the visual quality, robustness and speed of serial position based dynamics.
Scalable partitioning for parallel position based dynamics / Fratarcangeli, M.; Pellacini, Fabio. - In: COMPUTER GRAPHICS FORUM. - ISSN 0167-7055. - 34:2(2015), pp. 405-413. [10.1111/cgf.12570]
Scalable partitioning for parallel position based dynamics
PELLACINI, FABIO
2015
Abstract
We introduce a practical partitioning technique designed for parallelizing Position Based Dynamics, and exploiting the ubiquitous multi-core processors present in current commodity GPUs. The input is a set of particles whose dynamics is influenced by spatial constraints. In the initialization phase, we build a graph in which each node corresponds to a constraint and two constraints are connected by an edge if they influence at least one common particle. We introduce a novel greedy algorithm for inserting additional constraints (phantoms) in the graph such that the resulting topology is q-colourable, where ˆ qˆ ≥ 2 is an arbitrary number. We color the graph, and the constraints with the same color are assigned to the same partition. Then, the set of constraints belonging to each partition is solved in parallel during the animation phase. We demonstrate this by using our partitioning technique; the performance hit caused by the GPU kernel calls is significantly decreased, leaving unaffected the visual quality, robustness and speed of serial position based dynamics.File | Dimensione | Formato | |
---|---|---|---|
Pellacini_Scalable_2015.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
6.35 MB
Formato
Adobe PDF
|
6.35 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.