Bone marrow stromal cell populations, containing a subset of multipotential skeletal stem cells, are increasingly contemplated for use in tissue engineering and stem cell therapy, whereas their involvement in the pathogenetic mechanisms of skeletal disorders is far less recognized. We compared the concentrations of stromal clonogenic cells, colony forming units-fibroblast (CFU-Fs), in norm and pathology. Initially, culture conditions were optimized by demonstrating that fetal bovine serum heat inactivation could significantly repress colony formation. Using non-heat-inactivated fetal bovine serum, the concentration of CFU-Fs (colony-forming efficiency, CFE) ranged from 3.5 +/- 1.0 to 11.5 +/- 4.0 per 1 x 10(5) nucleated cells in five inbred mouse strains. In four transgenic lines with profound bone involvement, CFE was either significantly reduced or increased compared to wild-type littermates. In normal human donors, CFE decreased slightly with age and averaged 52.2 +/- 4.1 for children and 32.3 +/- 3.0 for adults. CFE was significantly altered in patients with several skeletal, metabolic, and hematological disorders: reduced in congenital generalized lipodystrophy, achondroplasia (SADDAN), pseudoachondroplasia, and Paget disease of bone and elevated in alcaptonuria and sickle cell anemia. Our findings indicate that under appropriate culture conditions, CFE values may provide useful insights into bone/bone marrow pathophysiology.

Enumeration of the colony-forming units-fibroblast from mouse and human bone marrow in normal and pathological conditions / Kuznetsov, Sa; Mankani, Mh; Bianco, Paolo; Rober, Pg. - In: STEM CELL RESEARCH. - ISSN 1873-5061. - 2:(2009), pp. 83-94. [10.1016/j.scr.2008.07.007]

Enumeration of the colony-forming units-fibroblast from mouse and human bone marrow in normal and pathological conditions

BIANCO, Paolo;
2009

Abstract

Bone marrow stromal cell populations, containing a subset of multipotential skeletal stem cells, are increasingly contemplated for use in tissue engineering and stem cell therapy, whereas their involvement in the pathogenetic mechanisms of skeletal disorders is far less recognized. We compared the concentrations of stromal clonogenic cells, colony forming units-fibroblast (CFU-Fs), in norm and pathology. Initially, culture conditions were optimized by demonstrating that fetal bovine serum heat inactivation could significantly repress colony formation. Using non-heat-inactivated fetal bovine serum, the concentration of CFU-Fs (colony-forming efficiency, CFE) ranged from 3.5 +/- 1.0 to 11.5 +/- 4.0 per 1 x 10(5) nucleated cells in five inbred mouse strains. In four transgenic lines with profound bone involvement, CFE was either significantly reduced or increased compared to wild-type littermates. In normal human donors, CFE decreased slightly with age and averaged 52.2 +/- 4.1 for children and 32.3 +/- 3.0 for adults. CFE was significantly altered in patients with several skeletal, metabolic, and hematological disorders: reduced in congenital generalized lipodystrophy, achondroplasia (SADDAN), pseudoachondroplasia, and Paget disease of bone and elevated in alcaptonuria and sickle cell anemia. Our findings indicate that under appropriate culture conditions, CFE values may provide useful insights into bone/bone marrow pathophysiology.
2009
01 Pubblicazione su rivista::01a Articolo in rivista
Enumeration of the colony-forming units-fibroblast from mouse and human bone marrow in normal and pathological conditions / Kuznetsov, Sa; Mankani, Mh; Bianco, Paolo; Rober, Pg. - In: STEM CELL RESEARCH. - ISSN 1873-5061. - 2:(2009), pp. 83-94. [10.1016/j.scr.2008.07.007]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/79295
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 40
  • Scopus 78
  • ???jsp.display-item.citation.isi??? 73
social impact