Recent evidence showed that endogenous nicotinamide adenine dinucleotide phosphate-oxidase 4 (NOX4) may exert a protective role on the cardiovascular system inducing vasodilation, reduction of blood pressure, and anti-proliferative actions. However, the functional significance of NOX4 in the cardiovascular system in humans remains elusive. Mononuclear cell levels of NOX4 were assessed by immunoblotting in 14 Gitelman's patients (GS), a unique human model of endogenous Ang II signaling antagonism and activation of anti-atherosclerotic and anti-remodeling defenses, and compared to 11 untreated essential hypertensive patients as well as to 11 healthy normotensive subjects. The association between NOX4 and its effector heme oxygenase (HO-1) (sandwich immunoassay) was also evaluated. NOX4 protein levels were decreased in hypertensive patients as compared to both GS and healthy subjects (1.06±0.31 AU vs. 1.76±0.54, P=0.002 and vs. 1.61±0.54, P=0.018, respectively). NOX4 protein level did not differ between GS and healthy subjects. HO-1 levels were increased in GS patients as compared to both hypertensive patients and healthy subjects (8.65±3.08 ng/ml vs 3.70±1.19, P<0.0001, and vs 5.49±1.04, P=0.008, respectively. NOX4 levels correlate with HO-1 levels only in GS (r(2)=0.63; P=0.001), (r(2)=0.088; P=ns, in hypertensive patients and r(2)=0.082; P=ns, in healthy subjects). Our findings show that NOX4 and its effector HO-1 are reduced in hypertensive patients compared to GS patients, a human model opposite to hypertension. Although the functional significance of NOX4 needs further clarification, our preliminary data in a unique human model of anti-atherosclerotic and anti-remodeling defenses activation, highlight the potentially protective role of NOX4 in the human cardiovascular system.
Relationship between NOX4 level and angiotensin II signaling in Gitelman's syndrome. Implications with hypertension / Calò, Lorenzo A; Savoia, Carmine; Davis, Paul A; Pagnin, Elisa; Ravarotto, Verdiana; Maiolino, Giuseppe. - In: INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE. - ISSN 1940-5901. - STAMPA. - 8:5(2015), pp. 7487-7496.
Relationship between NOX4 level and angiotensin II signaling in Gitelman's syndrome. Implications with hypertension
SAVOIA, Carmine;
2015
Abstract
Recent evidence showed that endogenous nicotinamide adenine dinucleotide phosphate-oxidase 4 (NOX4) may exert a protective role on the cardiovascular system inducing vasodilation, reduction of blood pressure, and anti-proliferative actions. However, the functional significance of NOX4 in the cardiovascular system in humans remains elusive. Mononuclear cell levels of NOX4 were assessed by immunoblotting in 14 Gitelman's patients (GS), a unique human model of endogenous Ang II signaling antagonism and activation of anti-atherosclerotic and anti-remodeling defenses, and compared to 11 untreated essential hypertensive patients as well as to 11 healthy normotensive subjects. The association between NOX4 and its effector heme oxygenase (HO-1) (sandwich immunoassay) was also evaluated. NOX4 protein levels were decreased in hypertensive patients as compared to both GS and healthy subjects (1.06±0.31 AU vs. 1.76±0.54, P=0.002 and vs. 1.61±0.54, P=0.018, respectively). NOX4 protein level did not differ between GS and healthy subjects. HO-1 levels were increased in GS patients as compared to both hypertensive patients and healthy subjects (8.65±3.08 ng/ml vs 3.70±1.19, P<0.0001, and vs 5.49±1.04, P=0.008, respectively. NOX4 levels correlate with HO-1 levels only in GS (r(2)=0.63; P=0.001), (r(2)=0.088; P=ns, in hypertensive patients and r(2)=0.082; P=ns, in healthy subjects). Our findings show that NOX4 and its effector HO-1 are reduced in hypertensive patients compared to GS patients, a human model opposite to hypertension. Although the functional significance of NOX4 needs further clarification, our preliminary data in a unique human model of anti-atherosclerotic and anti-remodeling defenses activation, highlight the potentially protective role of NOX4 in the human cardiovascular system.File | Dimensione | Formato | |
---|---|---|---|
Calò_Relationship_2015.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
477.79 kB
Formato
Adobe PDF
|
477.79 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.