Semi-supervised learning (SSL) is the problem of learning a function with only a partially labeled training set. It has considerable practical interest in applications where labeled data is costly to obtain, while unlabeled data is abundant. One approach to SSL in the case of binary classification is inspired by work on transductive learning (TL) by Vapnik. It has been applied prevalently using support vector machines (SVM) as the base learning algorithm, giving rise to the so-called transductive SVM (TR-SVM). The resulting optimization problem, however, is highly non-convex and complex to solve. In this paper, we propose an alternative semi-supervised training algorithm based on the TL theory, namely semi-supervised random vector functional-link (RVFL) network, which is able to obtain state-of-the-art performance, while resulting in a standard convex optimization problem. In particular we show that, thanks to the characteristics of RVFLs networks, the resulting optimization problem can be safely approximated with a standard quadratic programming problem solvable in polynomial time. A wide range of experiments validate our proposal. As a comparison, we also propose a semi-supervised algorithm for RVFLs based on the theory of manifold regularization.
A semi-supervised random vector functional-link network based on the transductive framework / Scardapane, Simone; Comminiello, Danilo; Scarpiniti, Michele; Uncini, Aurelio. - In: INFORMATION SCIENCES. - ISSN 0020-0255. - 364-365:(2016), pp. 156-166. [10.1016/j.ins.2015.07.060]
A semi-supervised random vector functional-link network based on the transductive framework
SCARDAPANE, SIMONE;COMMINIELLO, DANILO;SCARPINITI, MICHELE;UNCINI, Aurelio
2016
Abstract
Semi-supervised learning (SSL) is the problem of learning a function with only a partially labeled training set. It has considerable practical interest in applications where labeled data is costly to obtain, while unlabeled data is abundant. One approach to SSL in the case of binary classification is inspired by work on transductive learning (TL) by Vapnik. It has been applied prevalently using support vector machines (SVM) as the base learning algorithm, giving rise to the so-called transductive SVM (TR-SVM). The resulting optimization problem, however, is highly non-convex and complex to solve. In this paper, we propose an alternative semi-supervised training algorithm based on the TL theory, namely semi-supervised random vector functional-link (RVFL) network, which is able to obtain state-of-the-art performance, while resulting in a standard convex optimization problem. In particular we show that, thanks to the characteristics of RVFLs networks, the resulting optimization problem can be safely approximated with a standard quadratic programming problem solvable in polynomial time. A wide range of experiments validate our proposal. As a comparison, we also propose a semi-supervised algorithm for RVFLs based on the theory of manifold regularization.File | Dimensione | Formato | |
---|---|---|---|
Scardapane_ Semi-supervised_2016.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
570.82 kB
Formato
Adobe PDF
|
570.82 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.