We consider the Brezis–Nirenberg problem: −Delta u = λu + |u|2∗−2u in Ω, u =0 on ∂Ω, where Ωis a smooth bounded domain in RN, N≥3, 2∗=2N/N−2is the critical Sobolev exponent and λ >0is a positive parameter. The main result of the paper shows that if N=4, 5, 6and λ is close to zero,there are no sign-changing solutions of the form uλ = PUδ1,ξ −PUδ2,ξ +wλ, where PUδiis the projection on H10(Ω)of the regular positive solution of the critical problem in RN, centered at a point ξ∈Ωand wλis a remainder term. Some additional results on norm estimates are given.
A nonexistence result for sign-changing solutions of the Brezis-Nirenberg problem in low dimensions / Iacopetti, Alessandro; Pacella, Filomena. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - STAMPA. - 258:12(2015), pp. 4180-4208. [10.1016/j.jde.2015.01.030]
A nonexistence result for sign-changing solutions of the Brezis-Nirenberg problem in low dimensions
PACELLA, Filomena
2015
Abstract
We consider the Brezis–Nirenberg problem: −Delta u = λu + |u|2∗−2u in Ω, u =0 on ∂Ω, where Ωis a smooth bounded domain in RN, N≥3, 2∗=2N/N−2is the critical Sobolev exponent and λ >0is a positive parameter. The main result of the paper shows that if N=4, 5, 6and λ is close to zero,there are no sign-changing solutions of the form uλ = PUδ1,ξ −PUδ2,ξ +wλ, where PUδiis the projection on H10(Ω)of the regular positive solution of the critical problem in RN, centered at a point ξ∈Ωand wλis a remainder term. Some additional results on norm estimates are given.File | Dimensione | Formato | |
---|---|---|---|
Iacopetti_Nonexistence-result_2015.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
375.28 kB
Formato
Adobe PDF
|
375.28 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.