We study the following generalized SU(3) Toda System ⎧⎩⎨⎪⎪−Δ=2+−Δ=2+∫ℝ2<+∞, ∫ℝ2<+∞ in ℝ2 in ℝ2 where >−2 . We prove the existence of radial solutions bifurcating from the radial solution (log64(2+)(8+||2)2,log64(2+)(8+||2)2) at the values ==22−−22++2, ∈ℕ .
On a general SU(3) Toda system / Gladiali, Francesca; Grossi, Massimo; Wei, Juncheng. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - STAMPA. - (2015). [10.1007/s00526-015-0906-2]
On a general SU(3) Toda system
GROSSI, Massimo;
2015
Abstract
We study the following generalized SU(3) Toda System ⎧⎩⎨⎪⎪−Δ=2+−Δ=2+∫ℝ2<+∞, ∫ℝ2<+∞ in ℝ2 in ℝ2 where >−2 . We prove the existence of radial solutions bifurcating from the radial solution (log64(2+)(8+||2)2,log64(2+)(8+||2)2) at the values ==22−−22++2, ∈ℕ .File allegati a questo prodotto
File | Dimensione | Formato | |
---|---|---|---|
Gladiali_On-a-general-SU(3)_2015.pdf
solo gestori archivio
Note: We study the following generalized SU(3) Toda System ⎧⎩⎨⎪⎪−Δ𝑢=2𝑒𝑢+𝜇𝑒𝑣−Δ𝑣=2𝑒𝑣+𝜇𝑒𝑢∫ℝ2𝑒𝑢<+∞, ∫ℝ2𝑒𝑣<+∞ in ℝ2 in ℝ2 where 𝜇>−2 . We prove the existence of radial solutions bifurcating from the radial solution (log64(2+𝜇)(8+|𝑥|2)2,log64(2+𝜇)(8+|𝑥|2)2) at the values 𝜇=𝜇𝑛=22−𝑛−𝑛22+𝑛+𝑛2, 𝑛∈ℕ .
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
871.57 kB
Formato
Adobe PDF
|
871.57 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.