Patients with Taylor's type focal cortical dysplasia (FCD) present with seizures that are often medically intractable. Here, we attempted to identify the cellular and pharmacological mechanisms responsible for this epileptogenic state by using ®eld potential and K+- selective recordings in neocortical slices obtained from epileptic patients with FCD and, for purposes of comparison, with mesial temporal lobe epilepsy (MTLE), an epileptic disorder that, at least in the neocortex, is not characterized by any obvious structural aberration of neuronal networks. Spontaneous epileptiform activity was induced in vitro by applying 4-aminopyridine (4AP)-containing medium. Under these conditions, we could identify in FCD slices a close temporal relationship between ictal activity onset and the occurrence of slow interictal-like events that were mainly contributed by GABAA receptor activation. We also found that in FCD slices, pharmacological procedures capable of decreasing or increasing GABAA receptor function abolished or potentiated ictal discharges, respectively. In addition, the initiation of ictal events in FCD tissue coincided with the occurrence of GABAA receptordependent interictal events leading to [K+]o elevations that were larger than those seen during the interictal period. Finally, by testing the effects induced by baclofen on epileptiform events generated by FCD and MTLE slices, we discovered that the function of GABAB receptors (presumably located at presynaptic inhibitory terminals) was markedly decreased in FCD tissue. Thus, epileptiform synchronization leading to in vitro ictal activity in the human FCD tissue is initiated by a synchronizing mechanism that paradoxically relies on GABAA receptor activation causing sizeable increases in [K+]o. This mechanism may be facilitated by the decreased ability of GABAB receptors to control GABA release from interneuron terminals.

GABAA receptors-dependent synchronization leads to ictogenesis in the human dysplastic cortex / D'Antuono, M.; Louvel, J.; Koehling, R.; Mattia, D.; Bernasconi, A.; Olivier, A.; Turak, B.; Devaux, A.; Avoli, Massimo. - In: BRAIN. - ISSN 0006-8950. - STAMPA. - 127:(2004), pp. 1626-1640. [10.1093/brain/awh181]

GABAA receptors-dependent synchronization leads to ictogenesis in the human dysplastic cortex

AVOLI, Massimo
2004

Abstract

Patients with Taylor's type focal cortical dysplasia (FCD) present with seizures that are often medically intractable. Here, we attempted to identify the cellular and pharmacological mechanisms responsible for this epileptogenic state by using ®eld potential and K+- selective recordings in neocortical slices obtained from epileptic patients with FCD and, for purposes of comparison, with mesial temporal lobe epilepsy (MTLE), an epileptic disorder that, at least in the neocortex, is not characterized by any obvious structural aberration of neuronal networks. Spontaneous epileptiform activity was induced in vitro by applying 4-aminopyridine (4AP)-containing medium. Under these conditions, we could identify in FCD slices a close temporal relationship between ictal activity onset and the occurrence of slow interictal-like events that were mainly contributed by GABAA receptor activation. We also found that in FCD slices, pharmacological procedures capable of decreasing or increasing GABAA receptor function abolished or potentiated ictal discharges, respectively. In addition, the initiation of ictal events in FCD tissue coincided with the occurrence of GABAA receptordependent interictal events leading to [K+]o elevations that were larger than those seen during the interictal period. Finally, by testing the effects induced by baclofen on epileptiform events generated by FCD and MTLE slices, we discovered that the function of GABAB receptors (presumably located at presynaptic inhibitory terminals) was markedly decreased in FCD tissue. Thus, epileptiform synchronization leading to in vitro ictal activity in the human FCD tissue is initiated by a synchronizing mechanism that paradoxically relies on GABAA receptor activation causing sizeable increases in [K+]o. This mechanism may be facilitated by the decreased ability of GABAB receptors to control GABA release from interneuron terminals.
2004
01 Pubblicazione su rivista::01a Articolo in rivista
GABAA receptors-dependent synchronization leads to ictogenesis in the human dysplastic cortex / D'Antuono, M.; Louvel, J.; Koehling, R.; Mattia, D.; Bernasconi, A.; Olivier, A.; Turak, B.; Devaux, A.; Avoli, Massimo. - In: BRAIN. - ISSN 0006-8950. - STAMPA. - 127:(2004), pp. 1626-1640. [10.1093/brain/awh181]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/78802
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 48
  • Scopus 135
  • ???jsp.display-item.citation.isi??? 127
social impact