The thermal Sunyaev-Zel’dovich (tSZ) effect is expected to provide a low scatter mass proxy for galaxy clusters since it is directly proportional to the cluster thermal energy. The tSZ observations have proven to be a powerful tool for detecting and studying them, but high angular resolution observations are now needed to push their investigation to a higher redshift. In this paper, we report high angular (<20 arcsec) resolution tSZ observations of the high-redshift cluster CL J1226.9+3332 (z = 0.89). It was imaged at 150 and 260 GHz using the NIKA camera at the IRAM 30-meter telescope. The 150 GHz map shows that CL J1226.9+3332 is morphologically relaxed on large scales with evidence of a disturbed core, while the 260 GHz channel is used mostly to identify point source contamination. NIKA data are combined with those of Planck and X-ray from Chandra to infer the cluster’s radial pressure, density, temperature, and entropy distributions. The total mass profile of the cluster is derived, and we find M500 = 5.96+1.02−0.79 ×1014M within the radius R500 = 930+50−43 kpc, at a 68% confidence level. (R500 is the radius within which the average density is 500 times the critical density at the cluster’s redshift.) NIKA is the prototype camera of NIKA2, a KIDs (kinetic inductance detectors) based instrument to be installed at the end of 2015. This work is, therefore, part of a pilot study aiming at optimizing tSZ NIKA2 large programs.
Pressure distribution of the high-redshift cluster of galaxies CL J1226.9+3332 with NIKA / R., Adam; B., Comis; J. F., Macías Pérez; A., Adane; P., Ade; P., André; A., Beelen; B., Belier; A., Benoît; A., Bideaud; N., Billot; G., Blanquer; O., Bourrion; M., Calvo; A., Catalano; G., Coiffard; Cruciani, Angelo; A., D’Addabbo; F. X., Désert; S., Doyle; J., Goupy; C., Kramer; S., Leclercq; J., Martino; P., Mauskopf; F., Mayet; A., Monfardini; F., Pajot; Pascale, Enzo; L., Perotto; E., Pointecouteau; N., Ponthieu; V., Revéret; A., Ritacco; L., Rodriguez; G., Savini; K., Schuster; A., Sievers; C., Tucker; R., Zylka. - In: ASTRONOMY & ASTROPHYSICS. - ISSN 0004-6361. - STAMPA. - 576:(2015), p. A12. [10.1051/0004-6361/201425140]
Pressure distribution of the high-redshift cluster of galaxies CL J1226.9+3332 with NIKA
CRUCIANI, ANGELO;PASCALE, ENZO;
2015
Abstract
The thermal Sunyaev-Zel’dovich (tSZ) effect is expected to provide a low scatter mass proxy for galaxy clusters since it is directly proportional to the cluster thermal energy. The tSZ observations have proven to be a powerful tool for detecting and studying them, but high angular resolution observations are now needed to push their investigation to a higher redshift. In this paper, we report high angular (<20 arcsec) resolution tSZ observations of the high-redshift cluster CL J1226.9+3332 (z = 0.89). It was imaged at 150 and 260 GHz using the NIKA camera at the IRAM 30-meter telescope. The 150 GHz map shows that CL J1226.9+3332 is morphologically relaxed on large scales with evidence of a disturbed core, while the 260 GHz channel is used mostly to identify point source contamination. NIKA data are combined with those of Planck and X-ray from Chandra to infer the cluster’s radial pressure, density, temperature, and entropy distributions. The total mass profile of the cluster is derived, and we find M500 = 5.96+1.02−0.79 ×1014M within the radius R500 = 930+50−43 kpc, at a 68% confidence level. (R500 is the radius within which the average density is 500 times the critical density at the cluster’s redshift.) NIKA is the prototype camera of NIKA2, a KIDs (kinetic inductance detectors) based instrument to be installed at the end of 2015. This work is, therefore, part of a pilot study aiming at optimizing tSZ NIKA2 large programs.File | Dimensione | Formato | |
---|---|---|---|
Pascale_Pressure-distribution.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.64 MB
Formato
Adobe PDF
|
1.64 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.