Mathematical models of the cardiovascular system and of cerebral autoregulation (CAR) have been employed for several years in order to describe the time course of pressures and flows changes subsequent to postural changes. The assessment of the degree of efficiency of cerebral auto regulation has indeed importance in the prognosis of such conditions as cerebro-vascular accidents or Alzheimer. In the quest for a simple but realistic mathematical description of cardiovascular control, which may be fitted onto non-invasive experimental observations after postural changes, the present work proposes a first version of an empirical Stochastic Delay Differential Equations (SDDEs) model. The model consists of a total of four SDDEs and two ancillary algebraic equations, incorporates four distinct delayed controls from the brain onto different components of the circulation, and is able to accurately capture the time course of mean arterial pressure and cerebral blood flow velocity signals, reproducing observed auto-correlated error around the expected drift.

A stochastic delay differential model of cerebral autoregulation / S., Panunzi; L., D'Orsi; Iacoviello, Daniela; A., De Gaetano. - In: PLOS ONE. - ISSN 1932-6203. - 10:4(2015), pp. 1-21. [10.1371/journal.pone.0118456]

A stochastic delay differential model of cerebral autoregulation

IACOVIELLO, Daniela;
2015

Abstract

Mathematical models of the cardiovascular system and of cerebral autoregulation (CAR) have been employed for several years in order to describe the time course of pressures and flows changes subsequent to postural changes. The assessment of the degree of efficiency of cerebral auto regulation has indeed importance in the prognosis of such conditions as cerebro-vascular accidents or Alzheimer. In the quest for a simple but realistic mathematical description of cardiovascular control, which may be fitted onto non-invasive experimental observations after postural changes, the present work proposes a first version of an empirical Stochastic Delay Differential Equations (SDDEs) model. The model consists of a total of four SDDEs and two ancillary algebraic equations, incorporates four distinct delayed controls from the brain onto different components of the circulation, and is able to accurately capture the time course of mean arterial pressure and cerebral blood flow velocity signals, reproducing observed auto-correlated error around the expected drift.
2015
autoregulation; brain blood flow; cerebral autoregulation; mathematical model; mean arterial pressure; oscillation; qualitative analysis; statistics; stochastic delay differential equation
01 Pubblicazione su rivista::01a Articolo in rivista
A stochastic delay differential model of cerebral autoregulation / S., Panunzi; L., D'Orsi; Iacoviello, Daniela; A., De Gaetano. - In: PLOS ONE. - ISSN 1932-6203. - 10:4(2015), pp. 1-21. [10.1371/journal.pone.0118456]
File allegati a questo prodotto
File Dimensione Formato  
Panunzi_A-stochastic-Delay_2015.PDF

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 607.86 kB
Formato Adobe PDF
607.86 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/783108
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact