Abstract We study the regularizing effect of the interaction between the coefficient of the zero order term and the datum in some nonlinear Dirichlet problems. The simplest example is the linear problem View the MathML source Turn MathJax on where Ω is a bounded open set of RN , M is a bounded elliptic matrix and 0≤a(x)∈L1(Ω) . Even if f(x) only belongs to L1(Ω) , the assumption View the MathML source Turn MathJax on implies the existence of a weak solution u belonging to View the MathML source and to L∞(Ω) .

Regularizing effect of the interplay between coefficients in some elliptic equations / David, Arcoya; Boccardo, Lucio. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - STAMPA. - 268:(2015), pp. 1153-1166. [10.1016/j.jfa.2014.11.011]

Regularizing effect of the interplay between coefficients in some elliptic equations

BOCCARDO, Lucio
2015

Abstract

Abstract We study the regularizing effect of the interaction between the coefficient of the zero order term and the datum in some nonlinear Dirichlet problems. The simplest example is the linear problem View the MathML source Turn MathJax on where Ω is a bounded open set of RN , M is a bounded elliptic matrix and 0≤a(x)∈L1(Ω) . Even if f(x) only belongs to L1(Ω) , the assumption View the MathML source Turn MathJax on implies the existence of a weak solution u belonging to View the MathML source and to L∞(Ω) .
2015
linear and nonlinear elliptic equations; natural growth with respect to the gradient; L1 coefficients; regularizing effect
01 Pubblicazione su rivista::01a Articolo in rivista
Regularizing effect of the interplay between coefficients in some elliptic equations / David, Arcoya; Boccardo, Lucio. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - STAMPA. - 268:(2015), pp. 1153-1166. [10.1016/j.jfa.2014.11.011]
File allegati a questo prodotto
File Dimensione Formato  
Arcoya_Regularizing-effect_2015.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 332.62 kB
Formato Adobe PDF
332.62 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/783082
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 50
  • ???jsp.display-item.citation.isi??? 45
social impact