We continue the study of integrability of bi-Hamiltonian systems with a compatible pair of local Poisson structures (H0, H1), where H0 is a strongly skew-adjoint operator. This is applied to the construction of some new two field integrable systems of PDE by taking the pair (H0, H1) in the family of compatible Poisson structures that arose in the study of cohomology of moduli spaces of curves.

On integrability of some bi-Hamiltonian two field systems of partial differential equations / DE SOLE, Alberto; V., Kac; R., Turhan. - In: JOURNAL OF MATHEMATICAL PHYSICS. - ISSN 0022-2488. - STAMPA. - 56:5(2015), pp. 051503-051522. [10.1063/1.4919542]

On integrability of some bi-Hamiltonian two field systems of partial differential equations

DE SOLE, ALBERTO
;
2015

Abstract

We continue the study of integrability of bi-Hamiltonian systems with a compatible pair of local Poisson structures (H0, H1), where H0 is a strongly skew-adjoint operator. This is applied to the construction of some new two field integrable systems of PDE by taking the pair (H0, H1) in the family of compatible Poisson structures that arose in the study of cohomology of moduli spaces of curves.
2015
Integrable Hamltonian systems; Poisson vertex algebras; variational Poisson cohomology
01 Pubblicazione su rivista::01a Articolo in rivista
On integrability of some bi-Hamiltonian two field systems of partial differential equations / DE SOLE, Alberto; V., Kac; R., Turhan. - In: JOURNAL OF MATHEMATICAL PHYSICS. - ISSN 0022-2488. - STAMPA. - 56:5(2015), pp. 051503-051522. [10.1063/1.4919542]
File allegati a questo prodotto
File Dimensione Formato  
DeSole_On-integrability_2015.pdf

solo gestori archivio

Note: Articolo
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 721.22 kB
Formato Adobe PDF
721.22 kB Adobe PDF   Contatta l'autore
DeSole_postprint_On-integrability_2015.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 285.56 kB
Formato Unknown
285.56 kB Unknown

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/782749
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact