We study the problem of prescribing the Gaussian curvature on surfaces with conical singularities in supercritical regimes. Using a Morse-theoretical approach, we prove a general existence theorem on surfaces with positive genus, with a generic multiplicity result.
Supercritical Conformal Metrics on Surfaces with Conical Singularities / DE MARCHIS, Francesca; A., Malchiodi; Bartolucci, Daniele. - In: INTERNATIONAL MATHEMATICS RESEARCH NOTICES. - ISSN 1073-7928. - STAMPA. - 2011:24(2011), pp. 5625-5643. [10.1093/imrn/rnq285]
Supercritical Conformal Metrics on Surfaces with Conical Singularities
DE MARCHIS, FRANCESCA;BARTOLUCCI, DANIELE
2011
Abstract
We study the problem of prescribing the Gaussian curvature on surfaces with conical singularities in supercritical regimes. Using a Morse-theoretical approach, we prove a general existence theorem on surfaces with positive genus, with a generic multiplicity result.File allegati a questo prodotto
File | Dimensione | Formato | |
---|---|---|---|
Bartolucci_Supercritical_2011.pdf.pdf
solo gestori archivio
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
210.39 kB
Formato
Adobe PDF
|
210.39 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.