For a simple complex Lie algebra g we study the space of g-invariants in the tensor product of the exterior algebra of g^* with g^*, which describes the isotypic component of type g in the exterior algebra, as a module over the algebra of invariants. As main result we prove that A is a free module, of rank twice the rank of g, over the exterior algebra generated by all primitive invariants with the exception of the one of highest degree.
The adjoint representation inside the exterior algebra of a simple Lie algebra / De Concini, Corrado; Papi, Paolo; Procesi, Claudio. - In: ADVANCES IN MATHEMATICS. - ISSN 0001-8708. - STAMPA. - 280:(2015), pp. 21-46. [10.1016/j.aim.2015.04.011]
The adjoint representation inside the exterior algebra of a simple Lie algebra
DE CONCINI, Corrado;PAPI, Paolo;PROCESI, Claudio
2015
Abstract
For a simple complex Lie algebra g we study the space of g-invariants in the tensor product of the exterior algebra of g^* with g^*, which describes the isotypic component of type g in the exterior algebra, as a module over the algebra of invariants. As main result we prove that A is a free module, of rank twice the rank of g, over the exterior algebra generated by all primitive invariants with the exception of the one of highest degree.File | Dimensione | Formato | |
---|---|---|---|
DeConcini_Adjoint-representation_2015.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
469.9 kB
Formato
Adobe PDF
|
469.9 kB | Adobe PDF | Contatta l'autore |
DeConcini_postprint_Adjoint-representation_2015.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Creative commons
Dimensione
267.84 kB
Formato
Adobe PDF
|
267.84 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.