We have observed the H (II) region RCW175 with the 64m Parkes telescope at 8.4 GHz and 13.5 GHz in total intensity, and at 21.5 GHz in both total intensity and polarization. High angular resolution ranging from 1 to 2.4 arcmin, high sensitivity, and polarization capability enable us to perform a detailed study of the different constituents of the H (II) region. For the first time, we resolve three distinct regions at microwave frequencies, two of which are part of the same annular diffuse structure. Our observations enable us to confirm the presence of anomalous microwave emission (AME) from RCW175. Fitting the integrated flux density across the entire region with the currently available spinning dust models, using physically motivated assumptions, indicates the presence of at least two spinning dust components: a warm component (T-gas = 5800 K) with a relatively large hydrogen number density n(H) = 26.3/cm(3) and a cold component (T-gas = 100 K) with a hydrogen number density of n(H) = 150/cm(3). The present study is an example highlighting the potential of using high angular-resolution microwave data to break model parameter degeneracies. Thanks to the spectral coverage and angular resolution of the Parkes observations, we have been able to derive one of the first AME/excess maps, at 13.5 GHz, showing clear evidence that the bulk of the anomalous emission arises in particular from one of the source components, with some additional contribution from the diffuse structure. A cross-correlation analysis with thermal dust emission has shown a high degree of correlation with one of the regions within RCW175. In the center of RCW175, we find an average polarized emission at 21.5 GHz of 2.2 +/- 0.2( rand.) +/- 0.3( sys.)% of the total emission, where we have included both systematic and statistical uncertainties at 68% CL. This polarized emission could be due to sub-dominant synchrotron emission from the region and is thus consistent with very faint or non-polarized emission associated with AME.

New Radio Observations of Anomalous Microwave Emission In the H II Region Rcw175 / Battistelli, Elia Stefano; E., Carretti; Cruciani, Angelo; DE BERNARDIS, Paolo; R., Genova Santos; Masi, Silvia; Naldi, Alessandro; R., Paladini; Piacentini, Francesco; C. T., Tibbs; L., Verstraete; N., Ysard. - In: THE ASTROPHYSICAL JOURNAL. - ISSN 0004-637X. - STAMPA. - 801:(2015), p. 111. [10.1088/0004-637X/801/2/111]

New Radio Observations of Anomalous Microwave Emission In the H II Region Rcw175

BATTISTELLI, Elia Stefano;CRUCIANI, ANGELO;DE BERNARDIS, Paolo;MASI, Silvia;NALDI, ALESSANDRO;PIACENTINI, Francesco;
2015

Abstract

We have observed the H (II) region RCW175 with the 64m Parkes telescope at 8.4 GHz and 13.5 GHz in total intensity, and at 21.5 GHz in both total intensity and polarization. High angular resolution ranging from 1 to 2.4 arcmin, high sensitivity, and polarization capability enable us to perform a detailed study of the different constituents of the H (II) region. For the first time, we resolve three distinct regions at microwave frequencies, two of which are part of the same annular diffuse structure. Our observations enable us to confirm the presence of anomalous microwave emission (AME) from RCW175. Fitting the integrated flux density across the entire region with the currently available spinning dust models, using physically motivated assumptions, indicates the presence of at least two spinning dust components: a warm component (T-gas = 5800 K) with a relatively large hydrogen number density n(H) = 26.3/cm(3) and a cold component (T-gas = 100 K) with a hydrogen number density of n(H) = 150/cm(3). The present study is an example highlighting the potential of using high angular-resolution microwave data to break model parameter degeneracies. Thanks to the spectral coverage and angular resolution of the Parkes observations, we have been able to derive one of the first AME/excess maps, at 13.5 GHz, showing clear evidence that the bulk of the anomalous emission arises in particular from one of the source components, with some additional contribution from the diffuse structure. A cross-correlation analysis with thermal dust emission has shown a high degree of correlation with one of the regions within RCW175. In the center of RCW175, we find an average polarized emission at 21.5 GHz of 2.2 +/- 0.2( rand.) +/- 0.3( sys.)% of the total emission, where we have included both systematic and statistical uncertainties at 68% CL. This polarized emission could be due to sub-dominant synchrotron emission from the region and is thus consistent with very faint or non-polarized emission associated with AME.
2015
dust; extinction; Hii regions; methods: data analysis; polarization; radiationmechanisms: general
01 Pubblicazione su rivista::01a Articolo in rivista
New Radio Observations of Anomalous Microwave Emission In the H II Region Rcw175 / Battistelli, Elia Stefano; E., Carretti; Cruciani, Angelo; DE BERNARDIS, Paolo; R., Genova Santos; Masi, Silvia; Naldi, Alessandro; R., Paladini; Piacentini, Francesco; C. T., Tibbs; L., Verstraete; N., Ysard. - In: THE ASTROPHYSICAL JOURNAL. - ISSN 0004-637X. - STAMPA. - 801:(2015), p. 111. [10.1088/0004-637X/801/2/111]
File allegati a questo prodotto
File Dimensione Formato  
Battistelli_New radio observations_2015.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 8.36 MB
Formato Adobe PDF
8.36 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/781758
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 23
social impact