We prove the existence of critical points of the N-vortex Hamiltonian HKR(x1, . . . , xN) = N i=1 Γ2i h(xi)+N i,j=1 j=k ΓiΓjG(xi, xj)+2N i=1 Γiψ0(xi) in a bounded domain Ω ⊂ R2 which may be simply or multiply connected. Here G denotes the Green function for the Dirichlet Laplace operator in Ω, more generally a hydrodynamic Green function, and h the Robin function. Moreover ψ0 ∈ C1(Ω) is a harmonic function on Ω. We obtain new critical points x = (x1, . . . ,xN) for N = 3 or N = 4 under conditions on the vorticities Γi ∈ R \ {0}. These critical points correspond to point vortex equilibria of the Euler equation in vorticity form. The case Γi = (−1)i of counterrotating vortices with identical vortex strength is included. The point vortex equilibria can be desingularized to obtain smooth steady state solutions of the Euler equations for an ideal fluid. The velocity of these steady states will be irrotational except for N vorticity blobs near x1, . . . ,xN
Critical Points of the N-vortex Hamiltonian in Bounded Planar Domains and Steady State Solutions of the Incompressible Euler Equations / T., Bartsch; Pistoia, Angela. - In: SIAM JOURNAL ON APPLIED MATHEMATICS. - ISSN 0036-1399. - STAMPA. - 2:75(2015), pp. 726-744.
Critical Points of the N-vortex Hamiltonian in Bounded Planar Domains and Steady State Solutions of the Incompressible Euler Equations.
PISTOIA, Angela
2015
Abstract
We prove the existence of critical points of the N-vortex Hamiltonian HKR(x1, . . . , xN) = N i=1 Γ2i h(xi)+N i,j=1 j=k ΓiΓjG(xi, xj)+2N i=1 Γiψ0(xi) in a bounded domain Ω ⊂ R2 which may be simply or multiply connected. Here G denotes the Green function for the Dirichlet Laplace operator in Ω, more generally a hydrodynamic Green function, and h the Robin function. Moreover ψ0 ∈ C1(Ω) is a harmonic function on Ω. We obtain new critical points x = (x1, . . . ,xN) for N = 3 or N = 4 under conditions on the vorticities Γi ∈ R \ {0}. These critical points correspond to point vortex equilibria of the Euler equation in vorticity form. The case Γi = (−1)i of counterrotating vortices with identical vortex strength is included. The point vortex equilibria can be desingularized to obtain smooth steady state solutions of the Euler equations for an ideal fluid. The velocity of these steady states will be irrotational except for N vorticity blobs near x1, . . . ,xNFile | Dimensione | Formato | |
---|---|---|---|
bapi-siap2015.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
250.77 kB
Formato
Adobe PDF
|
250.77 kB | Adobe PDF | Contatta l'autore |
1408.1748.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
182.18 kB
Formato
Adobe PDF
|
182.18 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.