We consider the boundary-value problem −Δu + u = λeu in Br0 , ∂νu = 0 on ∂Br0 , where Br0 is the ball of radius r0 in RN, N 2, λ > 0 and ν is the outer normal derivative at ∂Br0 . This problem is equivalent to the stationary Keller–Segel system from chemotaxis. We show the existence of a solution concentrating at the boundary of the ball as λ goes to 0.
Steady states with unbounded mass of the Keller-Segel system / Pistoia, Angela; Vaira, Giusi. - In: PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH. SECTION A. MATHEMATICS. - ISSN 0308-2105. - STAMPA. - 1:145(2015), pp. 203-222. [10.1017/S0308210513000619]
Steady states with unbounded mass of the Keller-Segel system
PISTOIA, Angela;
2015
Abstract
We consider the boundary-value problem −Δu + u = λeu in Br0 , ∂νu = 0 on ∂Br0 , where Br0 is the ball of radius r0 in RN, N 2, λ > 0 and ν is the outer normal derivative at ∂Br0 . This problem is equivalent to the stationary Keller–Segel system from chemotaxis. We show the existence of a solution concentrating at the boundary of the ball as λ goes to 0.File allegati a questo prodotto
File | Dimensione | Formato | |
---|---|---|---|
Pistoia_Steady_2015.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
218.37 kB
Formato
Adobe PDF
|
218.37 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.