Cancer is a clonal evolutionary process, caused by successive accumulation of genetic alterations providing milestones of tumor initiation, progression, dissemination and/or resistance to certain therapeutic regimes. To unravel these milestones we propose a framework, tumor evolutionary directed graphs (TEDG), which is able to characterize the history of genetic alterations by integrating longitudinal and cross-sectional genomic data. We apply TEDG to a chronic lymphocytic leukemia (CLL) cohort of 70 patients spanning 12 years, and show that: (a) the evolution of CLL follows a time-ordered process represented as a global flow in TEDG that proceeds from initiating events to late events; (b) there are two distinct and mutually exclusive evolutionary paths of CLL evolution; (c) higher fitness clones are present in later stages of the disease, indicating a progressive clonal replacement with more aggressive clones. Our results suggest that TEDG may constitute an effective framework to recapitulate the evolutionary history of tumors.
Tumor evolutionary directed graphs and the history of chronic lymphocytic leukemia / Wang, J; Khiabanian, H; Rossi, D; Fabbri, G; Gattei, V; Forconi, F; Laurenti, L; Marasca, R; Del Poeta, G; Foa, Roberto; Pasqualucci, L; Gaidano, G; Rabadan, R.. - In: ELIFE. - ISSN 2050-084X. - 3:(2014). [10.7554/eLife.02869]
Tumor evolutionary directed graphs and the history of chronic lymphocytic leukemia.
FOA, Roberto;
2014
Abstract
Cancer is a clonal evolutionary process, caused by successive accumulation of genetic alterations providing milestones of tumor initiation, progression, dissemination and/or resistance to certain therapeutic regimes. To unravel these milestones we propose a framework, tumor evolutionary directed graphs (TEDG), which is able to characterize the history of genetic alterations by integrating longitudinal and cross-sectional genomic data. We apply TEDG to a chronic lymphocytic leukemia (CLL) cohort of 70 patients spanning 12 years, and show that: (a) the evolution of CLL follows a time-ordered process represented as a global flow in TEDG that proceeds from initiating events to late events; (b) there are two distinct and mutually exclusive evolutionary paths of CLL evolution; (c) higher fitness clones are present in later stages of the disease, indicating a progressive clonal replacement with more aggressive clones. Our results suggest that TEDG may constitute an effective framework to recapitulate the evolutionary history of tumors.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.