In [14], Guéant, Lasry and Lions considered the model problem "What time does meeting start?" as a prototype for a general class of optimization problems with a continuum of players, called Mean Field Games problems. In this paper we consider a similar model, but with the dynamics of the agents defined on a network. We discuss appropriate transition conditions at the vertices which give a well posed problem and we present some numerical results.

A model problem for Mean Field Games on networks / Camilli, Fabio; Carlini, Elisabetta; Claudio, Marchi. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. - ISSN 1078-0947. - STAMPA. - 35:(2015), pp. 4173-4192. [10.3934/dcds.2015.35.4173]

A model problem for Mean Field Games on networks

CAMILLI, FABIO;CARLINI, Elisabetta;
2015

Abstract

In [14], Guéant, Lasry and Lions considered the model problem "What time does meeting start?" as a prototype for a general class of optimization problems with a continuum of players, called Mean Field Games problems. In this paper we consider a similar model, but with the dynamics of the agents defined on a network. We discuss appropriate transition conditions at the vertices which give a well posed problem and we present some numerical results.
2015
Mean field games; networks; numerical methods; stochastic optimal control
01 Pubblicazione su rivista::01a Articolo in rivista
A model problem for Mean Field Games on networks / Camilli, Fabio; Carlini, Elisabetta; Claudio, Marchi. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. - ISSN 1078-0947. - STAMPA. - 35:(2015), pp. 4173-4192. [10.3934/dcds.2015.35.4173]
File allegati a questo prodotto
File Dimensione Formato  
Camilli_postprint_A-model-problem_2015.PDF

solo gestori archivio

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 655.3 kB
Formato Adobe PDF
655.3 kB Adobe PDF   Contatta l'autore
Camilli_preprint_A-model-problem_2015.PDF

solo gestori archivio

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 470.55 kB
Formato Unknown
470.55 kB Unknown   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/780767
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 14
social impact