A graph or more generally a multigraph can be interpreted as a family of stars - one star for each vertex - which adequately intersect on certain edges, so as to generate a global adjacency structure. An edge colouring can be read as an injective assignment of colours to each star, enjoying a "compatibility" property on adjacent vertices: for, any two intersecting stars must obviously get the same colour on each pair of overlapping edges (stars of multigraphs may have more than one overlap). The above interpretation justifies some key definitions which make an edge colouring rather similar to a differentiable atlas on a manifold. In the case of simple graphs, the distinction between class 1 and class 2 becomes the distinction between orientable and non-orientable atlases.

Il problema della colorabilità di spigoli di grafi critici viene riletto col linguaggio della geometria differenziale; in particolare la distinzione tra classe 1 e 2 diventa la nota distinzione tra presenza e assenza di orientabilità.

An Analogy Between Edge Colourings and Differentiable Manifolds, with a New Perspective on 3-Critical Graphs / Vietri, Andrea. - In: GRAPHS AND COMBINATORICS. - ISSN 0911-0119. - STAMPA. - 31:(2015), pp. 2425-2435. [10.1007/s00373-014-1512-3]

An Analogy Between Edge Colourings and Differentiable Manifolds, with a New Perspective on 3-Critical Graphs

VIETRI, Andrea
2015

Abstract

A graph or more generally a multigraph can be interpreted as a family of stars - one star for each vertex - which adequately intersect on certain edges, so as to generate a global adjacency structure. An edge colouring can be read as an injective assignment of colours to each star, enjoying a "compatibility" property on adjacent vertices: for, any two intersecting stars must obviously get the same colour on each pair of overlapping edges (stars of multigraphs may have more than one overlap). The above interpretation justifies some key definitions which make an edge colouring rather similar to a differentiable atlas on a manifold. In the case of simple graphs, the distinction between class 1 and class 2 becomes the distinction between orientable and non-orientable atlases.
2015
Il problema della colorabilità di spigoli di grafi critici viene riletto col linguaggio della geometria differenziale; in particolare la distinzione tra classe 1 e 2 diventa la nota distinzione tra presenza e assenza di orientabilità.
grafo; colorazione; atlante
01 Pubblicazione su rivista::01a Articolo in rivista
An Analogy Between Edge Colourings and Differentiable Manifolds, with a New Perspective on 3-Critical Graphs / Vietri, Andrea. - In: GRAPHS AND COMBINATORICS. - ISSN 0911-0119. - STAMPA. - 31:(2015), pp. 2425-2435. [10.1007/s00373-014-1512-3]
File allegati a questo prodotto
File Dimensione Formato  
Vietri_critical graphs.pdf

solo gestori archivio

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 381.23 kB
Formato Adobe PDF
381.23 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/780603
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact