We consider the widely used multinomial logit model with i.i.d. Gumbel random terms. Transition choice probabilities, i.e. probabilities of choosing alternative i in the first choice and alternative j in the second, are available in analytic form in the two extreme cases where the random terms of each alternative are independent or perfectly correlated across choices. We extend these results and provide the transition probabilities in analytic form in the case where the random terms follow a bi-extremal distribution with correlation coefficient varying in the full positive range between zero and one.

Transition choice probabilities in logit / DELLE SITE, Paolo; Salucci, MARCO VALERIO. - In: ECONOMICS LETTERS. - ISSN 0165-1765. - 126(2015), pp. 135-139. [10.1016/j.econlet.2014.12.002]

Transition choice probabilities in logit

DELLE SITE, PAOLO
;
SALUCCI, MARCO VALERIO
2015

Abstract

We consider the widely used multinomial logit model with i.i.d. Gumbel random terms. Transition choice probabilities, i.e. probabilities of choosing alternative i in the first choice and alternative j in the second, are available in analytic form in the two extreme cases where the random terms of each alternative are independent or perfectly correlated across choices. We extend these results and provide the transition probabilities in analytic form in the case where the random terms follow a bi-extremal distribution with correlation coefficient varying in the full positive range between zero and one.
2015
discrete choice; random utility; multinomial logit; transition probability; bi-extremal distribution
01 Pubblicazione su rivista::01a Articolo in rivista
Transition choice probabilities in logit / DELLE SITE, Paolo; Salucci, MARCO VALERIO. - In: ECONOMICS LETTERS. - ISSN 0165-1765. - 126(2015), pp. 135-139. [10.1016/j.econlet.2014.12.002]
File allegati a questo prodotto
File Dimensione Formato  
DelleSite_Transition-choice-probabilities_2015.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 408.38 kB
Formato Adobe PDF
408.38 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/779543
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact