Animal models have provided invaluable data for identifying the pathogenesis of epileptic disorders. Clearly, the relevance of these experimental findings would be strengthened by the demonstration that similar fundamental mechanisms are at work in the human epileptic brain. Epilepsy surgery has indeed opened the possibility to directly study the functional properties of human brain tissue in vitro, and to analyze the mechanisms underlying seizures and epileptogenesis. Here, we summarize the findings obtained over the last 40 years from electrophysiological, histochemical and molecular experiments made with the human brain tissue. In particular, this review will focus on (i) the synaptic and nonsynaptic properties of neocortical neurons along with their ability to Produce synchronous activity; (ii) the anatomical and functional alterations that characterize limbic structures in patients presenting with mesial temporal lobe epilepsy; (iii) the issue of antiepileptic drug action and resistance; and (iv) the pathophysiology of seizure genesis in Taylor's type focal cortical dysplasia. Finally, we will address some of the problems that are inherent to this type of experimental approach, in particular the lack of proper controls and possible strategies to obviate this limitation. (c) 2005 Elsevier Ltd. All rights reserved.

Cellular and molecular mechanisms of epilepsy in the human brain / Avoli, Massimo; Jacques, Louvel; Rene, Pumain; Rüdiger, Kohling. - In: PROGRESS IN NEUROBIOLOGY. - ISSN 0301-0082. - STAMPA. - 77:3(2005), pp. 166-200. [10.1016/j.pneurobio.2005.09.006]

Cellular and molecular mechanisms of epilepsy in the human brain

AVOLI, Massimo;
2005

Abstract

Animal models have provided invaluable data for identifying the pathogenesis of epileptic disorders. Clearly, the relevance of these experimental findings would be strengthened by the demonstration that similar fundamental mechanisms are at work in the human epileptic brain. Epilepsy surgery has indeed opened the possibility to directly study the functional properties of human brain tissue in vitro, and to analyze the mechanisms underlying seizures and epileptogenesis. Here, we summarize the findings obtained over the last 40 years from electrophysiological, histochemical and molecular experiments made with the human brain tissue. In particular, this review will focus on (i) the synaptic and nonsynaptic properties of neocortical neurons along with their ability to Produce synchronous activity; (ii) the anatomical and functional alterations that characterize limbic structures in patients presenting with mesial temporal lobe epilepsy; (iii) the issue of antiepileptic drug action and resistance; and (iv) the pathophysiology of seizure genesis in Taylor's type focal cortical dysplasia. Finally, we will address some of the problems that are inherent to this type of experimental approach, in particular the lack of proper controls and possible strategies to obviate this limitation. (c) 2005 Elsevier Ltd. All rights reserved.
2005
electrophysiology; epilepsy; focal dysplasia; gaba; histology; pathophysiology; temporal lobe
01 Pubblicazione su rivista::01a Articolo in rivista
Cellular and molecular mechanisms of epilepsy in the human brain / Avoli, Massimo; Jacques, Louvel; Rene, Pumain; Rüdiger, Kohling. - In: PROGRESS IN NEUROBIOLOGY. - ISSN 0301-0082. - STAMPA. - 77:3(2005), pp. 166-200. [10.1016/j.pneurobio.2005.09.006]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/77915
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 45
  • Scopus 161
  • ???jsp.display-item.citation.isi??? 147
social impact