Hidden Markov Models (HMMs) became recently important and popular among bioinformatics researchers, and many software tools are based on them. In this survey, we first consider in some detail the mathematical foundations of HMMs, we describe the most important algorithms, and provide useful comparisons, pointing out advantages and drawbacks. We then consider the major bioinformatics applications, such as alignment, labeling, and profiling of sequences, protein structure prediction, and pattern recognition. We finally provide a critical appraisal of the use and perspectives of HMMs in bioinformatics. © 2007 Bentham Science Publishers Ltd.
Hidden Markov Models in bioinformatics / Valeria De, Fonzo; ALUFFI PENTINI, Filippo; Parisi, Valerio. - In: CURRENT BIOINFORMATICS. - ISSN 1574-8936. - 2:1(2007), pp. 49-61. [10.2174/157489307779314348]
Hidden Markov Models in bioinformatics
ALUFFI PENTINI, Filippo;PARISI, Valerio
2007
Abstract
Hidden Markov Models (HMMs) became recently important and popular among bioinformatics researchers, and many software tools are based on them. In this survey, we first consider in some detail the mathematical foundations of HMMs, we describe the most important algorithms, and provide useful comparisons, pointing out advantages and drawbacks. We then consider the major bioinformatics applications, such as alignment, labeling, and profiling of sequences, protein structure prediction, and pattern recognition. We finally provide a critical appraisal of the use and perspectives of HMMs in bioinformatics. © 2007 Bentham Science Publishers Ltd.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.