Biological models typically depend on many parameters. Assigning suitable values to such parameters enables model individualisation. In our clinical setting, this means finding a model for a given patient. Parameter values cannot be assigned arbitrarily, since inter-dependency constraints among them are not modelled and ignoring such constraints leads to biologically meaningless model behaviours. Classical parameter identification or estimation techniques are typically not applicable due to scarcity of clinical measurements and the huge size of parameter space. Recently, we have proposed a statistical algorithm that finds (almost) all biologically meaningful parameter values. Unfortunately, such algorithm is computationally extremely intensive, taking up to months of sequential computation. In this paper we propose a parallel algorithm designed as to be effectively executed on an arbitrary large cluster of multi-core heterogenous machines.

Computing biological model parameters by parallel statistical model checking / Mancini, Toni; Tronci, Enrico; Salvo, Ivano; Mari, Federico; Massini, Annalisa; Melatti, Igor. - STAMPA. - 9044(2015), pp. 542-554. ((Intervento presentato al convegno Third International Conference, IWBBIO tenutosi a Granada, Spain nel April 15-17, 2015 [10.1007/978-3-319-16480-9_52].

Computing biological model parameters by parallel statistical model checking

MANCINI, Toni;TRONCI, Enrico;SALVO, Ivano;MARI, FEDERICO;MASSINI, Annalisa;MELATTI, IGOR
2015

Abstract

Biological models typically depend on many parameters. Assigning suitable values to such parameters enables model individualisation. In our clinical setting, this means finding a model for a given patient. Parameter values cannot be assigned arbitrarily, since inter-dependency constraints among them are not modelled and ignoring such constraints leads to biologically meaningless model behaviours. Classical parameter identification or estimation techniques are typically not applicable due to scarcity of clinical measurements and the huge size of parameter space. Recently, we have proposed a statistical algorithm that finds (almost) all biologically meaningful parameter values. Unfortunately, such algorithm is computationally extremely intensive, taking up to months of sequential computation. In this paper we propose a parallel algorithm designed as to be effectively executed on an arbitrary large cluster of multi-core heterogenous machines.
9783319164823
9783319164830
File allegati a questo prodotto
File Dimensione Formato  
Mancini_Computing_2015.pdf

solo gestori archivio

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 386.75 kB
Formato Adobe PDF
386.75 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11573/778370
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 12
social impact