Elliptic Cylindrical Waves (ECW), defined as the product of an angular Mathieu function by its corresponding radial Mathieu function, occur in the solution of scattering problems involving two-dimensional structures with elliptic cross sections. In this paper, we explicitly derive the expansion of ECW, along a plane surface, in terms of homogeneous and evanescent plane waves, showing the accuracy of the numerical implementation of the formulas and discussing possible applications of the result. © 2015 Elsevier B.V. All rights reserved.

Plane-wave expansion of elliptic cylindrical functions / Santini, Carlo; Frezza, Fabrizio; Tedeschi, Nicola. - In: OPTICS COMMUNICATIONS. - ISSN 0030-4018. - STAMPA. - 349:(2015), pp. 185-192. [10.1016/j.optcom.2015.03.057]

Plane-wave expansion of elliptic cylindrical functions

SANTINI, CARLO;FREZZA, Fabrizio;TEDESCHI, NICOLA
2015

Abstract

Elliptic Cylindrical Waves (ECW), defined as the product of an angular Mathieu function by its corresponding radial Mathieu function, occur in the solution of scattering problems involving two-dimensional structures with elliptic cross sections. In this paper, we explicitly derive the expansion of ECW, along a plane surface, in terms of homogeneous and evanescent plane waves, showing the accuracy of the numerical implementation of the formulas and discussing possible applications of the result. © 2015 Elsevier B.V. All rights reserved.
2015
elliptic cylinder; Fourier integral; Mathieu functions; plane surface; plane-wave spectrum
01 Pubblicazione su rivista::01a Articolo in rivista
Plane-wave expansion of elliptic cylindrical functions / Santini, Carlo; Frezza, Fabrizio; Tedeschi, Nicola. - In: OPTICS COMMUNICATIONS. - ISSN 0030-4018. - STAMPA. - 349:(2015), pp. 185-192. [10.1016/j.optcom.2015.03.057]
File allegati a questo prodotto
File Dimensione Formato  
Santini_Plane-wave_2015.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.27 MB
Formato Adobe PDF
1.27 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/777929
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact