We prove optimal estimates for the decay of mass of solutions to the Cauchy problem for a wide class of quasilinear parabolic equations with damping terms. In the degenerate case, we also prove estimates for the finite speed of propagation. When the equation contains also a blow up term, we discuss existence and nonexistence of global solutions.

The Cauchy Problem for Degenerate Parabolic Equations with Source and Damping / Andreucci, Daniele; Anatoli, Tedeev; Maura, Ughi. - In: UKRAINIAN MATHEMATICAL BULLETIN. - ISSN 1812-3309. - STAMPA. - 1:(2004), pp. 1-23.

The Cauchy Problem for Degenerate Parabolic Equations with Source and Damping

ANDREUCCI, Daniele;
2004

Abstract

We prove optimal estimates for the decay of mass of solutions to the Cauchy problem for a wide class of quasilinear parabolic equations with damping terms. In the degenerate case, we also prove estimates for the finite speed of propagation. When the equation contains also a blow up term, we discuss existence and nonexistence of global solutions.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/77253
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact