This paper deals with the hypograph of a function, i.e., the set of points lying on or below its graph. We will focus on a specific question: if and when a hypograph is connected. Special attention is devoted to the particular cases of additive discontinuous functions and everywhere surjections (constructions of everywhere surjections are also supplied). We give characterizations both of connected hypographs and of pathwise connected hypographs. In this context, simple examples arise of connected but not pathwise connected plane sets (in fact, with uncountably many path-components).

About the region below the graph of a function / Bernardi, Claudio. - In: BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA. - ISSN 1972-6724. - STAMPA. - 8:(2015), pp. 1-8. [10.1007/s40574-015-0020-6]

About the region below the graph of a function

BERNARDI, Claudio
2015

Abstract

This paper deals with the hypograph of a function, i.e., the set of points lying on or below its graph. We will focus on a specific question: if and when a hypograph is connected. Special attention is devoted to the particular cases of additive discontinuous functions and everywhere surjections (constructions of everywhere surjections are also supplied). We give characterizations both of connected hypographs and of pathwise connected hypographs. In this context, simple examples arise of connected but not pathwise connected plane sets (in fact, with uncountably many path-components).
2015
hypograph; connected set; additive function; everywhere surjection; strongly Darboux function
01 Pubblicazione su rivista::01a Articolo in rivista
About the region below the graph of a function / Bernardi, Claudio. - In: BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA. - ISSN 1972-6724. - STAMPA. - 8:(2015), pp. 1-8. [10.1007/s40574-015-0020-6]
File allegati a questo prodotto
File Dimensione Formato  
Bernardi_About-the-region_2015.pdf

solo gestori archivio

Note: reprint per l'autore
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 695.18 kB
Formato Adobe PDF
695.18 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/772199
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact