A novel class of special functions for electromagnetics is presented. Formed by the incomplete Hankel and modified Bessel functions, this class allows solving electromagnetics problems concerning truncated cylindrical structures. The differential and recurrence equations of these functions feature additional terms with respect to the classical theory of the Hankel and Bessel functions. The general properties, the most important analytical characteristics, and the large argument asymptotic approximations of the incomplete functions are derived using the steepest descent path (SDP) technique, showing that each special function splits into two terms. The first one has a discontinuous character and is linked to the saddle-point(s) contribution(s), while the second one, arising from the integral end-point contribution(s), compensates exactly the said discontinuity. In the solution of electromagnetic problems, the first term describes the geometrical optics (GO) field, the diffracted field being described by the second one. The general theory is employed to find the closed form analytical solution of the field radiated from a uniform line current source. Using the properties of the incomplete Hankel functions, it is demonstrated that this source excites cylindrical fields having optical character. Finally, the shape of the spatial regions where the GO solution cannot be applied is determined and discussed in details.

Incomplete Hankel and Modified Bessel Functions: A Class of Special Functions for Electromagnetics / Cicchetti, Renato; Faraone, A.. - In: IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION. - ISSN 0018-926X. - STAMPA. - 12:(2004), pp. 3373-3389. [10.1109/TAP.2004.835269]

Incomplete Hankel and Modified Bessel Functions: A Class of Special Functions for Electromagnetics

CICCHETTI, Renato;
2004

Abstract

A novel class of special functions for electromagnetics is presented. Formed by the incomplete Hankel and modified Bessel functions, this class allows solving electromagnetics problems concerning truncated cylindrical structures. The differential and recurrence equations of these functions feature additional terms with respect to the classical theory of the Hankel and Bessel functions. The general properties, the most important analytical characteristics, and the large argument asymptotic approximations of the incomplete functions are derived using the steepest descent path (SDP) technique, showing that each special function splits into two terms. The first one has a discontinuous character and is linked to the saddle-point(s) contribution(s), while the second one, arising from the integral end-point contribution(s), compensates exactly the said discontinuity. In the solution of electromagnetic problems, the first term describes the geometrical optics (GO) field, the diffracted field being described by the second one. The general theory is employed to find the closed form analytical solution of the field radiated from a uniform line current source. Using the properties of the incomplete Hankel functions, it is demonstrated that this source excites cylindrical fields having optical character. Finally, the shape of the spatial regions where the GO solution cannot be applied is determined and discussed in details.
2004
01 Pubblicazione su rivista::01a Articolo in rivista
Incomplete Hankel and Modified Bessel Functions: A Class of Special Functions for Electromagnetics / Cicchetti, Renato; Faraone, A.. - In: IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION. - ISSN 0018-926X. - STAMPA. - 12:(2004), pp. 3373-3389. [10.1109/TAP.2004.835269]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/77189
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 28
social impact