A quasi-linear formulation is proposed for high-speed finite-rate chemically reacting mixtures of imperfect gases, i.e., thermally perfect gases with specific heat varying with temperature. It retains the same formalism of a well-tried counterpart formulation for perfect gases, which has been proven to be suited for application of accurate and fast algorithms. Equations for both quasi-monodimensional flows, and for axisymmetric viscous flows are presented. The approach is based on the definition of an appropriate function F of temperature and concentration, which allows to identify Riemann variables for the flow under consideration; the formulation also includes equations for the entropy and the mass fractions of the N chemical species present in the reacting mixture. The key function F must be computed by numerical quadrature, together with its derivatives with respect to the individual species mass fractions. An example of computation of these quantities is reported, with reference to conditions in the combustion chamber of the Vulcain engine powering the first stage of the Ariane 5 launcher. Such a computation is demonstrated to be both economic and accurate, thus proving the workability of the proposed approach. Further, an estimate of the variation of the mixture specific heat ratio with temperature is given, in order to underline the importance of the effect under consideration. (c) 2007 Elsevier Ltd. All rights reserved.

A quasi-linear formulation for chemically reacting compressible mixtures of imperfect gases / Lentini, Diego. - In: ACTA ASTRONAUTICA. - ISSN 0094-5765. - 62:2-3(2008), pp. 177-184. [10.1016/j.actaastro.2006.10.016]

A quasi-linear formulation for chemically reacting compressible mixtures of imperfect gases

LENTINI, Diego
2008

Abstract

A quasi-linear formulation is proposed for high-speed finite-rate chemically reacting mixtures of imperfect gases, i.e., thermally perfect gases with specific heat varying with temperature. It retains the same formalism of a well-tried counterpart formulation for perfect gases, which has been proven to be suited for application of accurate and fast algorithms. Equations for both quasi-monodimensional flows, and for axisymmetric viscous flows are presented. The approach is based on the definition of an appropriate function F of temperature and concentration, which allows to identify Riemann variables for the flow under consideration; the formulation also includes equations for the entropy and the mass fractions of the N chemical species present in the reacting mixture. The key function F must be computed by numerical quadrature, together with its derivatives with respect to the individual species mass fractions. An example of computation of these quantities is reported, with reference to conditions in the combustion chamber of the Vulcain engine powering the first stage of the Ariane 5 launcher. Such a computation is demonstrated to be both economic and accurate, thus proving the workability of the proposed approach. Further, an estimate of the variation of the mixture specific heat ratio with temperature is given, in order to underline the importance of the effect under consideration. (c) 2007 Elsevier Ltd. All rights reserved.
2008
nozzle flows; reacting flows; thermal modelling
01 Pubblicazione su rivista::01a Articolo in rivista
A quasi-linear formulation for chemically reacting compressible mixtures of imperfect gases / Lentini, Diego. - In: ACTA ASTRONAUTICA. - ISSN 0094-5765. - 62:2-3(2008), pp. 177-184. [10.1016/j.actaastro.2006.10.016]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/76850
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact