The chemokine prokineticin 2 (PK2) activates its cognate G protein-coupled receptor (GPCR) PKR2 to elicit various downstream signaling pathways involved in diverse biological processes. Many GPCRs undergo dimerization that can modulate a number of functions including membrane delivery and signal transduction. The aim of this study was to elucidate the interface of PKR2 protomers within dimers by analyzing the ability of PKR2 transmembrane (TM) deletion mutants to associate with wild type (WT) PKR2 in yeast using co-immunoprecipitation and mammalian cells using bioluminescence resonance energy transfer. Deletion of TMs 5-7 resulted in a lack of detectable association with WT PKR2, but could associate with a truncated mutant lacking TMs 6-7 (TM1-5). Interestingly, TM1-5 modulated the distance, or organization, between protomers and positively regulated Gαs signaling and surface expression of WT PKR2. We propose that PKR2 protomers form type II dimers involving TMs 4 and 5, with a role fo
Identification of transmembrane domains that regulate spatial arrangements and activity of prokineticin receptor 2 dimers / Sposini, Silvia; G., Caltabiano; A. C., Hanyaloglu; Miele, Rossella. - In: MOLECULAR AND CELLULAR ENDOCRINOLOGY. - ISSN 0303-7207. - STAMPA. - 399:(2015), pp. 362-372. [10.1016/j.mce.2014.10.024]
Identification of transmembrane domains that regulate spatial arrangements and activity of prokineticin receptor 2 dimers
SPOSINI, SILVIAPrimo
Methodology
;MIELE, RossellaUltimo
Writing – Review & Editing
2015
Abstract
The chemokine prokineticin 2 (PK2) activates its cognate G protein-coupled receptor (GPCR) PKR2 to elicit various downstream signaling pathways involved in diverse biological processes. Many GPCRs undergo dimerization that can modulate a number of functions including membrane delivery and signal transduction. The aim of this study was to elucidate the interface of PKR2 protomers within dimers by analyzing the ability of PKR2 transmembrane (TM) deletion mutants to associate with wild type (WT) PKR2 in yeast using co-immunoprecipitation and mammalian cells using bioluminescence resonance energy transfer. Deletion of TMs 5-7 resulted in a lack of detectable association with WT PKR2, but could associate with a truncated mutant lacking TMs 6-7 (TM1-5). Interestingly, TM1-5 modulated the distance, or organization, between protomers and positively regulated Gαs signaling and surface expression of WT PKR2. We propose that PKR2 protomers form type II dimers involving TMs 4 and 5, with a role foFile | Dimensione | Formato | |
---|---|---|---|
Sposini_Identification_2015.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.24 MB
Formato
Adobe PDF
|
1.24 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.