There is growing concern about the transfer of methane originating from water bodies to the atmosphere. Methane from sediments can reach the atmosphere directly via bubbles or indirectly via vertical turbulent transport. This work quantifies methane gas bubble dissolution using a combination of bubble modeling and acoustic observations of rising bubbles to determine what fraction of the methane transported by bubbles will reach the atmosphere. The bubble model predicts the evolving bubble size, gas composition, and rise distance and is suitable for almost all aquatic environments. The model was validated using methane and argon bubble dissolution measurements obtained from the literature for deep, oxic, saline water with excellent results. Methane bubbles from within the hydrate stability zone (typically below _500 m water depth in the ocean) are believed to form an outer hydrate rim. To explain the subsequent slow dissolution, a model calibration was performed using bubble dissolution data from the literature measured within the hydrate stability zone. The calibrated model explains the impressively tall flares (>1300 m) observed in the hydrate stability zone of the Black Sea. This study suggests that only a small amount of methane reaches the surface at active seep sites in the Black Sea, and this only from very shallow water areas (<100 m). Clearly, the Black Sea and the ocean are rather effective barriers against the transfer of bubble methane to the atmosphere, although substantial amounts of methane may reach the surface in shallow lakes and reservoirs.

Fate of rising methane bubbles in stratified waters: How much methane reaches the atmosphere? / D. F., Mcginnis; J., Greinert; Y., Artemov; Beaubien, Stanley Eugene; A., Wüest. - In: JOURNAL OF GEOPHYSICAL RESEARCH. - ISSN 0148-0227. - STAMPA. - 111:(2006). [10.1029/2005JC003183]

Fate of rising methane bubbles in stratified waters: How much methane reaches the atmosphere?

BEAUBIEN, Stanley Eugene;
2006

Abstract

There is growing concern about the transfer of methane originating from water bodies to the atmosphere. Methane from sediments can reach the atmosphere directly via bubbles or indirectly via vertical turbulent transport. This work quantifies methane gas bubble dissolution using a combination of bubble modeling and acoustic observations of rising bubbles to determine what fraction of the methane transported by bubbles will reach the atmosphere. The bubble model predicts the evolving bubble size, gas composition, and rise distance and is suitable for almost all aquatic environments. The model was validated using methane and argon bubble dissolution measurements obtained from the literature for deep, oxic, saline water with excellent results. Methane bubbles from within the hydrate stability zone (typically below _500 m water depth in the ocean) are believed to form an outer hydrate rim. To explain the subsequent slow dissolution, a model calibration was performed using bubble dissolution data from the literature measured within the hydrate stability zone. The calibrated model explains the impressively tall flares (>1300 m) observed in the hydrate stability zone of the Black Sea. This study suggests that only a small amount of methane reaches the surface at active seep sites in the Black Sea, and this only from very shallow water areas (<100 m). Clearly, the Black Sea and the ocean are rather effective barriers against the transfer of bubble methane to the atmosphere, although substantial amounts of methane may reach the surface in shallow lakes and reservoirs.
2006
01 Pubblicazione su rivista::01a Articolo in rivista
Fate of rising methane bubbles in stratified waters: How much methane reaches the atmosphere? / D. F., Mcginnis; J., Greinert; Y., Artemov; Beaubien, Stanley Eugene; A., Wüest. - In: JOURNAL OF GEOPHYSICAL RESEARCH. - ISSN 0148-0227. - STAMPA. - 111:(2006). [10.1029/2005JC003183]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/761207
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 508
  • ???jsp.display-item.citation.isi??? 468
social impact