Let G = (V,E) be a directed graph. A vertex v ∈ V (respectively an edge e ∈ E) is a strong articulation point (respectively a strong bridge) if its removal increases the number of strongly connected components of G. We implement and engineer the linear-time algorithms in [9] for computing all the strong articulation points and all the strong bridges of a directed graph. Our implementations are tested against real-world graphs taken from several application domains, including social networks, communication graphs, web graphs, peer2peer networks and product co-purchase graphs. The algorithms implemented turn out to be very efficient in practice, and are able to run on large scale graphs, i.e., on graphs with ten million vertices and half billion edges. Our experiments on such graphs highlight some properties of strong articulation points, which might be of independent interest.

Computing Strong Articulation Points and Strong Bridges in Large Scale Graphs / Firmani, D.; Italiano, G. F.; Laura, Luigi; Orlandi, A.; Santaroni, F.. - 7276:(2012), pp. 195-207. [10.1007/978-3-642-30850-5_18]

Computing Strong Articulation Points and Strong Bridges in Large Scale Graphs.

D. Firmani;LAURA, Luigi;
2012

Abstract

Let G = (V,E) be a directed graph. A vertex v ∈ V (respectively an edge e ∈ E) is a strong articulation point (respectively a strong bridge) if its removal increases the number of strongly connected components of G. We implement and engineer the linear-time algorithms in [9] for computing all the strong articulation points and all the strong bridges of a directed graph. Our implementations are tested against real-world graphs taken from several application domains, including social networks, communication graphs, web graphs, peer2peer networks and product co-purchase graphs. The algorithms implemented turn out to be very efficient in practice, and are able to run on large scale graphs, i.e., on graphs with ten million vertices and half billion edges. Our experiments on such graphs highlight some properties of strong articulation points, which might be of independent interest.
2012
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Computing Strong Articulation Points and Strong Bridges in Large Scale Graphs / Firmani, D.; Italiano, G. F.; Laura, Luigi; Orlandi, A.; Santaroni, F.. - 7276:(2012), pp. 195-207. [10.1007/978-3-642-30850-5_18]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/759811
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? ND
social impact