The shortening of the telomeres that occurs in most somatic cells and untransformed cell cultures is considered a hallmark of cellular senescence. Re-activation of telomerase, which is usually present in immortal cells, avoids telomere shortening and considerably extends the culture life span. Normal human endothelial cells are characterized by an accelerated rate of telomere shortening and reach replicative senescence after a limited number of cell divisions. It has recently been reported that human telomerase reverse transcriptase expression may be strongly up-regulated in human endothelial cells cocultivated with tumor cells. Due to the important implications of this finding on tumor progression, we have extensively analyzed for the presence of telomerase in primary human endothelial cells either cocultivated with tumor cells or grown with tumorconditioned medium. We found modest, but readily detectable, amounts of telomerase in all human endothelial cell cultures analyzed that disappeared as the cultures approached senescence. Quantitative reverse transcription-PCR also showed a direct correlation between human telomerase reverse transcriptase expression and the proliferative index of the cultures. Nevertheless, we did not find any evidence of induction of telomerase activity by tumor cells in any of the tested conditions. All data indicate that telomerase in human endothelial cells follows an activation program that is strictly associated to the culture growth rate.

Tumor cells fail to trans-induce telomerase in human umbilical vein endothelial cell cultures / Pascale, Esterina; G., Cimino Reale; E., D'Ambrosio. - In: CANCER RESEARCH. - ISSN 0008-5472. - STAMPA. - 64:21(2004), pp. 7702-7705. [10.1158/0008-5472.can-04-1711]

Tumor cells fail to trans-induce telomerase in human umbilical vein endothelial cell cultures

PASCALE, ESTERINA;
2004

Abstract

The shortening of the telomeres that occurs in most somatic cells and untransformed cell cultures is considered a hallmark of cellular senescence. Re-activation of telomerase, which is usually present in immortal cells, avoids telomere shortening and considerably extends the culture life span. Normal human endothelial cells are characterized by an accelerated rate of telomere shortening and reach replicative senescence after a limited number of cell divisions. It has recently been reported that human telomerase reverse transcriptase expression may be strongly up-regulated in human endothelial cells cocultivated with tumor cells. Due to the important implications of this finding on tumor progression, we have extensively analyzed for the presence of telomerase in primary human endothelial cells either cocultivated with tumor cells or grown with tumorconditioned medium. We found modest, but readily detectable, amounts of telomerase in all human endothelial cell cultures analyzed that disappeared as the cultures approached senescence. Quantitative reverse transcription-PCR also showed a direct correlation between human telomerase reverse transcriptase expression and the proliferative index of the cultures. Nevertheless, we did not find any evidence of induction of telomerase activity by tumor cells in any of the tested conditions. All data indicate that telomerase in human endothelial cells follows an activation program that is strictly associated to the culture growth rate.
2004
01 Pubblicazione su rivista::01a Articolo in rivista
Tumor cells fail to trans-induce telomerase in human umbilical vein endothelial cell cultures / Pascale, Esterina; G., Cimino Reale; E., D'Ambrosio. - In: CANCER RESEARCH. - ISSN 0008-5472. - STAMPA. - 64:21(2004), pp. 7702-7705. [10.1158/0008-5472.can-04-1711]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/73556
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact