Traditional models of input demand rely upon convex and symmetric adjustment costs. However, the fortune of this highly restrictive approach is due more to analytical convenience than to empirical relevance. In this note we examine the model under more realistic hypothesis of fixed costs, show that it can be cast in the form of a Double Censored Random Effect TobitModel, derive its likelihood function, and finally evaluate the performance of theML estimators through aMonte Carlo experiment. The performances, although strongly dependent on the degree of censoring, appear to be promising

Maximum likelihood estimation of input demand models with fixed costs of adjustment / F., Di Iorio; Fachin, Stefano. - In: STATISTICAL METHODS & APPLICATIONS. - ISSN 1618-2510. - 15:1(2006), pp. 129-137. [10.1007/s10260-006-0014-8]

Maximum likelihood estimation of input demand models with fixed costs of adjustment

FACHIN, Stefano
2006

Abstract

Traditional models of input demand rely upon convex and symmetric adjustment costs. However, the fortune of this highly restrictive approach is due more to analytical convenience than to empirical relevance. In this note we examine the model under more realistic hypothesis of fixed costs, show that it can be cast in the form of a Double Censored Random Effect TobitModel, derive its likelihood function, and finally evaluate the performance of theML estimators through aMonte Carlo experiment. The performances, although strongly dependent on the degree of censoring, appear to be promising
2006
double censored random effect tobit model.; fixed cost of adjustment
01 Pubblicazione su rivista::01a Articolo in rivista
Maximum likelihood estimation of input demand models with fixed costs of adjustment / F., Di Iorio; Fachin, Stefano. - In: STATISTICAL METHODS & APPLICATIONS. - ISSN 1618-2510. - 15:1(2006), pp. 129-137. [10.1007/s10260-006-0014-8]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/72911
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact