High accurate digital elevation models (DEM) acquired periodically over a volcanic area can be used for monitoring crustal deformations. Airborne stereoscopic photography is a powerful tool for the derivation of high resolution DEM, especially when combined with Global Positioning System (GPS). We analyse data acquired on Vulcano Island (Italy) to assess the performance of two photogrammetry methods for DEM generation. The first method is based on automatic digital processing of scanned airborne stereo images from a film camera (Wild RC20). In the second method digital stereo data from the multi-spectral High Resolution Stereo Camera-Airborne (HRSC-A) are used. Accuracy assessment through comparison with kinematic GPS height profiles shows that both DEMs have accuracy on the order of few decimetres. Direct comparison of the two DEMs on the La Fossa volcanic cone provides a standard deviation of the residuals of 78 cm. Residuals greater than two metres between the two DEMs acquired at one year interval are locally evidenced in unstable areas with uneven morphology. The application of photogrammetric DEMs is also discussed within a SAR interferometry study carried out on Vulcano Island to evaluate the potentialities of such techniques for ground deformation monitoring. Although accuracy better than 1 m or 2 m is not required for satellite SAR interferometry, we show how the precise photogrammetric DEMs could still significantly improve SAR interferograms of Vulcano Island.

Validation and comparison of different techniques for the derivation of digital elevation models and volcanic monitoring (Vulcano Island, Italy) / P., Baldi; S., Bonvalot; P., Briole; M., Coltelli; K., Gwinner; Marsella, Maria Antonietta; G., Puglisi; D., Remy. - In: INTERNATIONAL JOURNAL OF REMOTE SENSING. - ISSN 0143-1161. - 23:22(2002), pp. 4783-4800. [10.1080/01431160110115861]

Validation and comparison of different techniques for the derivation of digital elevation models and volcanic monitoring (Vulcano Island, Italy)

MARSELLA, Maria Antonietta;
2002

Abstract

High accurate digital elevation models (DEM) acquired periodically over a volcanic area can be used for monitoring crustal deformations. Airborne stereoscopic photography is a powerful tool for the derivation of high resolution DEM, especially when combined with Global Positioning System (GPS). We analyse data acquired on Vulcano Island (Italy) to assess the performance of two photogrammetry methods for DEM generation. The first method is based on automatic digital processing of scanned airborne stereo images from a film camera (Wild RC20). In the second method digital stereo data from the multi-spectral High Resolution Stereo Camera-Airborne (HRSC-A) are used. Accuracy assessment through comparison with kinematic GPS height profiles shows that both DEMs have accuracy on the order of few decimetres. Direct comparison of the two DEMs on the La Fossa volcanic cone provides a standard deviation of the residuals of 78 cm. Residuals greater than two metres between the two DEMs acquired at one year interval are locally evidenced in unstable areas with uneven morphology. The application of photogrammetric DEMs is also discussed within a SAR interferometry study carried out on Vulcano Island to evaluate the potentialities of such techniques for ground deformation monitoring. Although accuracy better than 1 m or 2 m is not required for satellite SAR interferometry, we show how the precise photogrammetric DEMs could still significantly improve SAR interferograms of Vulcano Island.
2002
01 Pubblicazione su rivista::01a Articolo in rivista
Validation and comparison of different techniques for the derivation of digital elevation models and volcanic monitoring (Vulcano Island, Italy) / P., Baldi; S., Bonvalot; P., Briole; M., Coltelli; K., Gwinner; Marsella, Maria Antonietta; G., Puglisi; D., Remy. - In: INTERNATIONAL JOURNAL OF REMOTE SENSING. - ISSN 0143-1161. - 23:22(2002), pp. 4783-4800. [10.1080/01431160110115861]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/71533
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 39
social impact