we consider an unbounded fractal layer S of Sierpinski type and we prove some analytic properties such as the essential self-adjointness of the Laplacian, the stochastic completeness of S, and Liouville-type theorems for subharmoinc functions.
The liouville properties of unbounded fractal layers / Lancia, Maria Rosaria; Masamune, J.. - In: COMPLEX VARIABLES AND ELLIPTIC EQUATIONS. - ISSN 1747-6933. - STAMPA. - 53:(2008), pp. 296-306. [10.1080/17476930701589597]
The liouville properties of unbounded fractal layers
LANCIA, Maria Rosaria;
2008
Abstract
we consider an unbounded fractal layer S of Sierpinski type and we prove some analytic properties such as the essential self-adjointness of the Laplacian, the stochastic completeness of S, and Liouville-type theorems for subharmoinc functions.File allegati a questo prodotto
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.