Two Gamma-convergence results for a general class of power-law functionals are obtained in the setting of A-quasiconvexity. New variational principles in L^{infty} are introduced, allowing for the description of the yield set in the context of a simplified model of polycrystal plasticity. A number of highly degenerate nonlinear partial differential equations arise as Aronsson equations associated with these variational principles.
Gamma-convergence of power-law functionals, variational principles in L-infinity, and application / M., Bocea; Nesi, Vincenzo. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - 39(2008), pp. 1550-1576. [10.1137/060672388]
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Gamma-convergence of power-law functionals, variational principles in L-infinity, and application | |
Autori: | ||
Data di pubblicazione: | 2008 | |
Rivista: | ||
Citazione: | Gamma-convergence of power-law functionals, variational principles in L-infinity, and application / M., Bocea; Nesi, Vincenzo. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - 39(2008), pp. 1550-1576. [10.1137/060672388] | |
Handle: | http://hdl.handle.net/11573/70677 | |
Appartiene alla tipologia: | 01a Articolo in rivista |