The multicopper oxidase ceruloplasmin plays a key role in iron homeostasis, and its ferroxidase activity is required to stabilize cell surface ferroportin, the only known mammalian iron exporter. Missense mutations causing the rare autosomal neurodegenerative disease aceruloplasminemia were investigated by testing their ability to prevent ferroportin degradation in rat glioma C6 cells silenced for endogenous ceruloplasmin. Most of the mutants did not complement (i.e. did not stabilize ferroportin) because of the irreversible loss of copper binding ability. Mutant R701W, which was found in a heterozygous very young patient with severe neurological problems, was unable to complement per se but did so in the presence of copper-glutathione or when the yeast copper ATPase Ccc2p was co-expressed, indicating that the protein was structurally able to bind copper but that metal loading involving the mammalian copper ATPase ATP7B was impaired. Notably, R701W exerted a dominant negative effect on wild type, and it induced the subcellular relocalization of ATP7B. Our results constitute the first evidence of “functional silencing” of ATP7B as a novel molecular defect in aceruloplasminemia. The possibility to reverse the deleterious effects of some aceruloplasminemia mutations may disclose new possible therapeutic strategies.

Dominant mutants of ceruloplasmin impair the copper loading machinery in aceruloplasminemia / BONACCORSI DI PATTI, Maria Carmela; Maio, N; Rizzo, G; DE FRANCESCO, Giovanni; Persichini, T; Colasanti, M; Polticelli, F; Musci, G.. - In: THE JOURNAL OF BIOLOGICAL CHEMISTRY. - ISSN 0021-9258. - 284:(2009), pp. 4545-4554. [10.1074/jbc.M805688200]

Dominant mutants of ceruloplasmin impair the copper loading machinery in aceruloplasminemia.

BONACCORSI DI PATTI, Maria Carmela;DE FRANCESCO, GIOVANNI;
2009

Abstract

The multicopper oxidase ceruloplasmin plays a key role in iron homeostasis, and its ferroxidase activity is required to stabilize cell surface ferroportin, the only known mammalian iron exporter. Missense mutations causing the rare autosomal neurodegenerative disease aceruloplasminemia were investigated by testing their ability to prevent ferroportin degradation in rat glioma C6 cells silenced for endogenous ceruloplasmin. Most of the mutants did not complement (i.e. did not stabilize ferroportin) because of the irreversible loss of copper binding ability. Mutant R701W, which was found in a heterozygous very young patient with severe neurological problems, was unable to complement per se but did so in the presence of copper-glutathione or when the yeast copper ATPase Ccc2p was co-expressed, indicating that the protein was structurally able to bind copper but that metal loading involving the mammalian copper ATPase ATP7B was impaired. Notably, R701W exerted a dominant negative effect on wild type, and it induced the subcellular relocalization of ATP7B. Our results constitute the first evidence of “functional silencing” of ATP7B as a novel molecular defect in aceruloplasminemia. The possibility to reverse the deleterious effects of some aceruloplasminemia mutations may disclose new possible therapeutic strategies.
2009
01 Pubblicazione su rivista::01a Articolo in rivista
Dominant mutants of ceruloplasmin impair the copper loading machinery in aceruloplasminemia / BONACCORSI DI PATTI, Maria Carmela; Maio, N; Rizzo, G; DE FRANCESCO, Giovanni; Persichini, T; Colasanti, M; Polticelli, F; Musci, G.. - In: THE JOURNAL OF BIOLOGICAL CHEMISTRY. - ISSN 0021-9258. - 284:(2009), pp. 4545-4554. [10.1074/jbc.M805688200]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/70107
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 20
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 36
social impact