In recent years, bone tissue regeneration studies have led to a deeper knowledge of chemical and structural features of the best biomaterials to be used as replacements for lost bone structures, with the autologus bone still today the only graft material able to ostegenerate, osteinduct and/or osteoconduct. The difficulties of the small available amount of autologus bone, together with morbidity of a second surgical operation on the same patient, have been overcome using both synthetic and biologic substitute bones. The possibility of investigating morphometric characteristics of substitute bones makes it possible to evaluate the predictability of regenerative processes and, so far, a range of different methods have been used for the purpose. X-ray microtomography (micro-CT) is a miniaturized form of conventional tomography, able to analyze the internal structure of small objects, performing three-dimensional images with high spatial resolution (< 10 micron pixel size). For a correct a

In recent years, bone tissue regeneration studies have led to a deeper knowledge of chemical and structural features of the best biomaterials to be used as replacements for lost bone structures, with the autologus bone still today the only graft material able to ostegenerate, osteinduct and/or osteoconduct. The difficulties of the small available amount of autologus bone, together with morbidity of a second surgical operation on the same patient, have been overcome using both synthetic and biologic substitute bones. The possibility of investigating morphometric characteristics of substitute bones makes it possible to evaluate the predictability of regenerative processes and, so far, a range of different methods have been used for the purpose. X-ray microtomography (micro-CT) is a miniaturized form of conventional tomography, able to analyze the internal structure of small objects, performing three-dimensional images with high spatial resolution (<10 micron pixel size). For a correct analysis, samples need not be altered or treated in any way, as micro-CT is a non-invasive and non-destructive technique. It shows promising results in biomaterial studies and tissue engineering. This work shows the potential applications of this microtomographic technique by means of an in vitro analysis system, in characterizing morphometric features of human bone tissue, and contributes to the use of this technique in studies concerning biomaterials and bioscaffolds inserted in bone tissue.

Microtomographic and morphometric characterization of a bioceramic bone substitute in dental implantology / D. 1., Meleo; R., Bedini; R., Pecci; F., Mangione; Pacifici, Luciano. - In: ANNALI DELL'ISTITUTO SUPERIORE DI SANITÀ. - ISSN 0021-2571. - STAMPA. - 48:1(2012), pp. 59-64. [10.4415/ann_12_01_10]

Microtomographic and morphometric characterization of a bioceramic bone substitute in dental implantology

PACIFICI, Luciano
2012

Abstract

In recent years, bone tissue regeneration studies have led to a deeper knowledge of chemical and structural features of the best biomaterials to be used as replacements for lost bone structures, with the autologus bone still today the only graft material able to ostegenerate, osteinduct and/or osteoconduct. The difficulties of the small available amount of autologus bone, together with morbidity of a second surgical operation on the same patient, have been overcome using both synthetic and biologic substitute bones. The possibility of investigating morphometric characteristics of substitute bones makes it possible to evaluate the predictability of regenerative processes and, so far, a range of different methods have been used for the purpose. X-ray microtomography (micro-CT) is a miniaturized form of conventional tomography, able to analyze the internal structure of small objects, performing three-dimensional images with high spatial resolution (< 10 micron pixel size). For a correct a
2012
In recent years, bone tissue regeneration studies have led to a deeper knowledge of chemical and structural features of the best biomaterials to be used as replacements for lost bone structures, with the autologus bone still today the only graft material able to ostegenerate, osteinduct and/or osteoconduct. The difficulties of the small available amount of autologus bone, together with morbidity of a second surgical operation on the same patient, have been overcome using both synthetic and biologic substitute bones. The possibility of investigating morphometric characteristics of substitute bones makes it possible to evaluate the predictability of regenerative processes and, so far, a range of different methods have been used for the purpose. X-ray microtomography (micro-CT) is a miniaturized form of conventional tomography, able to analyze the internal structure of small objects, performing three-dimensional images with high spatial resolution (<10 micron pixel size). For a correct analysis, samples need not be altered or treated in any way, as micro-CT is a non-invasive and non-destructive technique. It shows promising results in biomaterial studies and tissue engineering. This work shows the potential applications of this microtomographic technique by means of an in vitro analysis system, in characterizing morphometric features of human bone tissue, and contributes to the use of this technique in studies concerning biomaterials and bioscaffolds inserted in bone tissue.
tissue engineering; tissue scaffolds; x-ray microtomography; biocompatible materials
01 Pubblicazione su rivista::01a Articolo in rivista
Microtomographic and morphometric characterization of a bioceramic bone substitute in dental implantology / D. 1., Meleo; R., Bedini; R., Pecci; F., Mangione; Pacifici, Luciano. - In: ANNALI DELL'ISTITUTO SUPERIORE DI SANITÀ. - ISSN 0021-2571. - STAMPA. - 48:1(2012), pp. 59-64. [10.4415/ann_12_01_10]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/697113
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 13
social impact