A continuous-time dynamic model of a network of N nonlinear elements interacting via random asymmetric couplings is studied. A self-consistent mean-field theory, exact in the N limit, predicts a transition from a stationary phase to a chaotic phase occurring at a critical value of the gain parameter. The autocorrelations of the chaotic flow as well as the maximal Lyapunov exponent are calculated. © 1988 The American Physical Society.

CHAOS IN RANDOM NEURAL NETWORKS / H., Sompolinsky; Crisanti, Andrea; H. J., Sommers. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - 61:3(1988), pp. 259-262. [10.1103/physrevlett.61.259]

CHAOS IN RANDOM NEURAL NETWORKS

CRISANTI, Andrea;
1988

Abstract

A continuous-time dynamic model of a network of N nonlinear elements interacting via random asymmetric couplings is studied. A self-consistent mean-field theory, exact in the N limit, predicts a transition from a stationary phase to a chaotic phase occurring at a critical value of the gain parameter. The autocorrelations of the chaotic flow as well as the maximal Lyapunov exponent are calculated. © 1988 The American Physical Society.
1988
01 Pubblicazione su rivista::01a Articolo in rivista
CHAOS IN RANDOM NEURAL NETWORKS / H., Sompolinsky; Crisanti, Andrea; H. J., Sommers. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - 61:3(1988), pp. 259-262. [10.1103/physrevlett.61.259]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/69354
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 687
  • ???jsp.display-item.citation.isi??? 654
social impact