We study the behavior of the generalized Lyapunov exponents for chaotic symplectic dynamical systems and products of random matrices in the limit of large dimensionsD. For products of random matrices without any particular structure the generalized Lyapunov exponents become equal in this limit and the value of one of the generalized Lyapunov exponents is obtained by simple arguments. On the contrary, for random symplectic matrices with peculiar structures and for chaotic symplectic maps the generalized Lyapunov exponents remains different forD rarr infin, indicating that high dimensionality cannot always destroy intermittency.

Generalized Lyapunov Exponents in High Dimensional Chaotic Dynamics and Product of Large Random Matrices / Crisanti, Andrea; G., Paladin; Vulpiani, Angelo. - In: JOURNAL OF STATISTICAL PHYSICS. - ISSN 0022-4715. - 53:(1988), pp. 583-601. [10.1007/BF01014215]

Generalized Lyapunov Exponents in High Dimensional Chaotic Dynamics and Product of Large Random Matrices

CRISANTI, Andrea;VULPIANI, Angelo
1988

Abstract

We study the behavior of the generalized Lyapunov exponents for chaotic symplectic dynamical systems and products of random matrices in the limit of large dimensionsD. For products of random matrices without any particular structure the generalized Lyapunov exponents become equal in this limit and the value of one of the generalized Lyapunov exponents is obtained by simple arguments. On the contrary, for random symplectic matrices with peculiar structures and for chaotic symplectic maps the generalized Lyapunov exponents remains different forD rarr infin, indicating that high dimensionality cannot always destroy intermittency.
1988
01 Pubblicazione su rivista::01a Articolo in rivista
Generalized Lyapunov Exponents in High Dimensional Chaotic Dynamics and Product of Large Random Matrices / Crisanti, Andrea; G., Paladin; Vulpiani, Angelo. - In: JOURNAL OF STATISTICAL PHYSICS. - ISSN 0022-4715. - 53:(1988), pp. 583-601. [10.1007/BF01014215]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/69353
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 24
social impact