The average eigenvalue distribution of N×N real random asymmetric matrices Jij (Jji Jij) is calculated in the limit of Nz. It is found that () is uniform in an ellipse, in the complex plane, whose real and imaginary axes are 1+ and 1-, respectively. The parameter is given by =N[JijJji]J and N[Jij2]J is normalized to 1. In the =1 limit, Wigner's semicircle law is recovered. The results are extended to complex asymmetric matrices. © 1988 The American Physical Society.
SPECTRUM OF LARGE RANDOM ASYMMETRIC MATRICES / H. J., Sommers; Crisanti, Andrea; H., Sompolinsky; Y., Stein. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - STAMPA. - 60:19(1988), pp. 1895-1898. [10.1103/physrevlett.60.1895]
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | SPECTRUM OF LARGE RANDOM ASYMMETRIC MATRICES | |
Autori: | ||
Data di pubblicazione: | 1988 | |
Rivista: | ||
Citazione: | SPECTRUM OF LARGE RANDOM ASYMMETRIC MATRICES / H. J., Sommers; Crisanti, Andrea; H., Sompolinsky; Y., Stein. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - STAMPA. - 60:19(1988), pp. 1895-1898. [10.1103/physrevlett.60.1895] | |
Handle: | http://hdl.handle.net/11573/69352 | |
Appartiene alla tipologia: | 01a Articolo in rivista |