Autofluorescent proteins of the GFP family all share the same three-dimensional beta-can fold; yet they exhibit widely different optical properties, arising either from chemical modification of the chromophore itself or from specific interactions of the chromophore with the surrounding protein moiety. Here we present a structural and spectroscopic characterization of the green fluorescent protein cmFP512 from Cerianthus membranaceus, a nonbioluminescent, azooxanthellate cnidarian, which has only approximately 22% sequence identity with Aequorea victoria GFP. The X-ray structure, obtained by molecular replacement at a resolution of 1. 35 A, shows the chromophore, formed from the tripeptide Gln-Tyr-Gly, in a hydrogen-bonded cage in the center of an 11-stranded beta-barrel, tightly restrained by adjacent residues and structural water molecules. It exists in a neutral (A) and an anionic (B) species, with absorption/emission maxima at 392/460 (pH 5) and 503/512 nm (pH 7). Their fractional populations and peak positions depend sensitively on pH, reflecting protonation of groups adjacent to the chromophore. The pH dependence of the spectra is explained by a protonation mechanism involving a hydrogen-bonded cluster of charged/polar groups. Cryospectroscopy at 12 K was also performed to analyze the vibronic coupling of the electronic transitions.

Exploring Chromophore-Protein Interactions in Fluorescent Protein cmFP512 from Cerianthus membranaceus: X-ray Structure Analysis and Optical Spectroscopy / Nienhaus, K; Renzi, Fabiana; Vallone, Beatrice; Wiedenmann, J; Nienhaus, G. U.. - In: BIOCHEMISTRY. - ISSN 0006-2960. - 45:(2006), pp. 12942-12953. [10.1021/bi060885c]

Exploring Chromophore-Protein Interactions in Fluorescent Protein cmFP512 from Cerianthus membranaceus: X-ray Structure Analysis and Optical Spectroscopy.

RENZI, FABIANA;VALLONE, Beatrice;
2006

Abstract

Autofluorescent proteins of the GFP family all share the same three-dimensional beta-can fold; yet they exhibit widely different optical properties, arising either from chemical modification of the chromophore itself or from specific interactions of the chromophore with the surrounding protein moiety. Here we present a structural and spectroscopic characterization of the green fluorescent protein cmFP512 from Cerianthus membranaceus, a nonbioluminescent, azooxanthellate cnidarian, which has only approximately 22% sequence identity with Aequorea victoria GFP. The X-ray structure, obtained by molecular replacement at a resolution of 1. 35 A, shows the chromophore, formed from the tripeptide Gln-Tyr-Gly, in a hydrogen-bonded cage in the center of an 11-stranded beta-barrel, tightly restrained by adjacent residues and structural water molecules. It exists in a neutral (A) and an anionic (B) species, with absorption/emission maxima at 392/460 (pH 5) and 503/512 nm (pH 7). Their fractional populations and peak positions depend sensitively on pH, reflecting protonation of groups adjacent to the chromophore. The pH dependence of the spectra is explained by a protonation mechanism involving a hydrogen-bonded cluster of charged/polar groups. Cryospectroscopy at 12 K was also performed to analyze the vibronic coupling of the electronic transitions.
2006
01 Pubblicazione su rivista::01a Articolo in rivista
Exploring Chromophore-Protein Interactions in Fluorescent Protein cmFP512 from Cerianthus membranaceus: X-ray Structure Analysis and Optical Spectroscopy / Nienhaus, K; Renzi, Fabiana; Vallone, Beatrice; Wiedenmann, J; Nienhaus, G. U.. - In: BIOCHEMISTRY. - ISSN 0006-2960. - 45:(2006), pp. 12942-12953. [10.1021/bi060885c]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/68786
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 27
social impact