Insulin receptor substrates-1 and -2 (IRS-1 and -2) are important substrates of the insulin receptor tyrosine kinase. Previous studies have focused upon the role of IRS-1 in mediating the actions of insulin. In the present study, we demonstrate that IRS-2 can mediate translocation of the insulin responsive glucose transporter GLUT4 in a physiologically relevant target cell for insulin action. Co-immunoprecipitation experiments performed on cell lysates derived from freshly isolated rat adipose cells incubated in the presence or absence of insulin indicated that twice as much phosphatidylinositol 3-kinase was associated with endogenous IRS-1 as with IRS-2 after insulin stimulation. When rat adipose cells in primary culture were transfected with expression vectors for IRS-1 or IRS-2, we observed 40-fold overexpression of human IRS-1 or murine IRS-2. In addition, anti-phosphotyrosine immunoblotting experiments confirmed that the recombinant substrates were phosphorylated in response to insulin stimulation. To examine the role of IRS-2 in insulin-stimulated translocation of GLUT4, we studied the effects of overexpression of IRS-1 and -2 on translocation of a co-transfected epitope-tagged GLUT4 (GLUT4-HA). Overexpression of IRS-1 or IRS-2 in adipose cells resulted in a significant increase in the basal level of cell surface GLUT4 (in the absence of insulin). Interestingly, at maximally effective concentrations of insulin (60 nM), the level of cell surface GLUT4 in cells overexpressing IRS-1 or -2 significantly exceeded the maximal recruitment observed in the control cells (160 and 135% of control, respectively; p < 0.003). Our data directly demonstrate that IRS-2, like IRS-1, is capable of participating in insulin signal transduction pathways leading to the recruitment of GLUT4. Thus, IRS-2 may provide an alternative pathway for critical metabolic actions of insulin.

Insulin receptor substrate-2 (IRS-2) can mediate the action of insulin to stimulate translocation of GLUT4 to the cell surface in rat adipose cells / L., Zhou; H., Chen; C. H., Lin; L. N., Cong; M. A., Mcgibbon; Sciacchitano, Salvatore; M. A., Lesniak; M. J., Quon; S. I., Taylor. - In: THE JOURNAL OF BIOLOGICAL CHEMISTRY. - ISSN 0021-9258. - STAMPA. - 272:47(1997), pp. 29829-29833. [10.1074/jbc.272.47.29829]

Insulin receptor substrate-2 (IRS-2) can mediate the action of insulin to stimulate translocation of GLUT4 to the cell surface in rat adipose cells.

SCIACCHITANO, Salvatore;
1997

Abstract

Insulin receptor substrates-1 and -2 (IRS-1 and -2) are important substrates of the insulin receptor tyrosine kinase. Previous studies have focused upon the role of IRS-1 in mediating the actions of insulin. In the present study, we demonstrate that IRS-2 can mediate translocation of the insulin responsive glucose transporter GLUT4 in a physiologically relevant target cell for insulin action. Co-immunoprecipitation experiments performed on cell lysates derived from freshly isolated rat adipose cells incubated in the presence or absence of insulin indicated that twice as much phosphatidylinositol 3-kinase was associated with endogenous IRS-1 as with IRS-2 after insulin stimulation. When rat adipose cells in primary culture were transfected with expression vectors for IRS-1 or IRS-2, we observed 40-fold overexpression of human IRS-1 or murine IRS-2. In addition, anti-phosphotyrosine immunoblotting experiments confirmed that the recombinant substrates were phosphorylated in response to insulin stimulation. To examine the role of IRS-2 in insulin-stimulated translocation of GLUT4, we studied the effects of overexpression of IRS-1 and -2 on translocation of a co-transfected epitope-tagged GLUT4 (GLUT4-HA). Overexpression of IRS-1 or IRS-2 in adipose cells resulted in a significant increase in the basal level of cell surface GLUT4 (in the absence of insulin). Interestingly, at maximally effective concentrations of insulin (60 nM), the level of cell surface GLUT4 in cells overexpressing IRS-1 or -2 significantly exceeded the maximal recruitment observed in the control cells (160 and 135% of control, respectively; p < 0.003). Our data directly demonstrate that IRS-2, like IRS-1, is capable of participating in insulin signal transduction pathways leading to the recruitment of GLUT4. Thus, IRS-2 may provide an alternative pathway for critical metabolic actions of insulin.
1997
01 Pubblicazione su rivista::01a Articolo in rivista
Insulin receptor substrate-2 (IRS-2) can mediate the action of insulin to stimulate translocation of GLUT4 to the cell surface in rat adipose cells / L., Zhou; H., Chen; C. H., Lin; L. N., Cong; M. A., Mcgibbon; Sciacchitano, Salvatore; M. A., Lesniak; M. J., Quon; S. I., Taylor. - In: THE JOURNAL OF BIOLOGICAL CHEMISTRY. - ISSN 0021-9258. - STAMPA. - 272:47(1997), pp. 29829-29833. [10.1074/jbc.272.47.29829]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/68227
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 42
social impact