Spatially periodic and stationary localized solutions arising from the dynamics of chains of linearly coupled mechanical oscillators characterized by on site cubic nonlinearity are addressed aiming to explore their relationship with the underlying nonlinear wave propagation regions. Softening and hardening nonlinearities are considered, and regions of occurrence of discrete breathers and multibreathers associated with homoclinic or heteroclinic connections are identified. © 2014 Springer Science+Business Media Dordrecht.

Periodic and localized solutions in chains of oscillators with softening or hardening cubic nonlinearity / Romeo, Francesco; Rega, Giuseppe. - In: MECCANICA. - ISSN 0025-6455. - STAMPA. - (2014). [10.1007/s11012-014-9977-y]

Periodic and localized solutions in chains of oscillators with softening or hardening cubic nonlinearity

ROMEO, Francesco;REGA, GIUSEPPE
2014

Abstract

Spatially periodic and stationary localized solutions arising from the dynamics of chains of linearly coupled mechanical oscillators characterized by on site cubic nonlinearity are addressed aiming to explore their relationship with the underlying nonlinear wave propagation regions. Softening and hardening nonlinearities are considered, and regions of occurrence of discrete breathers and multibreathers associated with homoclinic or heteroclinic connections are identified. © 2014 Springer Science+Business Media Dordrecht.
2014
nonlinear maps; symmetry lines; discrete breathers; wave propagation; homoclinic/heteroclinic orbits; chains of oscillators; periodic solutions
01 Pubblicazione su rivista::01a Articolo in rivista
Periodic and localized solutions in chains of oscillators with softening or hardening cubic nonlinearity / Romeo, Francesco; Rega, Giuseppe. - In: MECCANICA. - ISSN 0025-6455. - STAMPA. - (2014). [10.1007/s11012-014-9977-y]
File allegati a questo prodotto
File Dimensione Formato  
Romeo_Periodic_2014.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 3.09 MB
Formato Adobe PDF
3.09 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/677451
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 15
social impact