Deep brain stimulation (DBS) is a promising tool for treating drug-resistant epileptic patients. Currently, the most common approach is fixed-frequency stimulation (periodic pacing) by means of stimulating devices that operate under open-loop control. However, a drawback of this DBS strategy is the impossibility of tailoring a personalized treatment, which also limits the optimization of the stimulating apparatus. Here, we propose a novel DBS methodology based on a closed-loop control strategy, developed by exploiting statistical machine learning techniques, in which stimulation parameters are adapted to the current neural activity thus allowing for seizure suppression that is fine-tuned on the individual scale (adaptive stimulation). By means of field potential recording from adult rat hippocampus-entorhinal cortex (EC) slices treated with the convulsant drug 4-aminopyridine we determined the effectiveness of this approach compared to low-frequency periodic pacing, and found that the closed-loop stimulation strategy: (i) has similar efficacy as low-frequency periodic pacing in suppressing ictal-like events but (ii) is more efficient than periodic pacing in that it requires less electrical pulses. We also provide evidence that the closed-loop stimulation strategy can alternatively be employed to tune the frequency of a periodic pacing strategy. Our findings indicate that the adaptive stimulation strategy may represent a novel, promising approach to DBS for individually-tailored epilepsy treatment. ©

Deep brain stimulation (DBS) is a promising tool for treating drug-resistant epileptic patients. Currently, the most common approach is fixed-frequency stimulation (periodic pacing) by means of stimulating devices that operate under open-loop control. However, a drawback of this DBS strategy is the impossibility of tailoring a personalized treatment, which also limits the optimization of the stimulating apparatus. Here, we propose a novel DBS methodology based on a closed-loop control strategy, developed by exploiting statistical machine learning techniques, in which stimulation parameters are adapted to the current neural activity thus allowing for seizure suppression that is fine-tuned on the individual scale (adaptive stimulation). By means of field potential recording from adult rat hippocampus-entorhinal cortex (EC) slices treated with the convulsant drug 4-aminopyridine we determined the effectiveness of this approach compared to low-frequency periodic pacing, and found that the closed-loop stimulation strategy: (i) has similar efficacy as low-frequency periodic pacing in suppressing ictal-like events but (ii) is more efficient than periodic pacing in that it requires less electrical pulses. We also provide evidence that the closed-loop stimulation strategy can alternatively be employed to tune the frequency of a periodic pacing strategy. Our findings indicate that the adaptive stimulation strategy may represent a novel, promising approach to DBS for individually-tailored epilepsy treatment.

Adaptive control of epileptiform excitability in an in vitro model of limbic seizures / Panuccio, G; Guez, A; Vincent, R; Avoli, Massimo; Pineau, J.. - In: EXPERIMENTAL NEUROLOGY. - ISSN 0014-4886. - STAMPA. - 241:(2013), pp. 179-183. [10.1016/j.expneurol.2013.01.002]

Adaptive control of epileptiform excitability in an in vitro model of limbic seizures

AVOLI, Massimo;
2013

Abstract

Deep brain stimulation (DBS) is a promising tool for treating drug-resistant epileptic patients. Currently, the most common approach is fixed-frequency stimulation (periodic pacing) by means of stimulating devices that operate under open-loop control. However, a drawback of this DBS strategy is the impossibility of tailoring a personalized treatment, which also limits the optimization of the stimulating apparatus. Here, we propose a novel DBS methodology based on a closed-loop control strategy, developed by exploiting statistical machine learning techniques, in which stimulation parameters are adapted to the current neural activity thus allowing for seizure suppression that is fine-tuned on the individual scale (adaptive stimulation). By means of field potential recording from adult rat hippocampus-entorhinal cortex (EC) slices treated with the convulsant drug 4-aminopyridine we determined the effectiveness of this approach compared to low-frequency periodic pacing, and found that the closed-loop stimulation strategy: (i) has similar efficacy as low-frequency periodic pacing in suppressing ictal-like events but (ii) is more efficient than periodic pacing in that it requires less electrical pulses. We also provide evidence that the closed-loop stimulation strategy can alternatively be employed to tune the frequency of a periodic pacing strategy. Our findings indicate that the adaptive stimulation strategy may represent a novel, promising approach to DBS for individually-tailored epilepsy treatment. ©
2013
Deep brain stimulation (DBS) is a promising tool for treating drug-resistant epileptic patients. Currently, the most common approach is fixed-frequency stimulation (periodic pacing) by means of stimulating devices that operate under open-loop control. However, a drawback of this DBS strategy is the impossibility of tailoring a personalized treatment, which also limits the optimization of the stimulating apparatus. Here, we propose a novel DBS methodology based on a closed-loop control strategy, developed by exploiting statistical machine learning techniques, in which stimulation parameters are adapted to the current neural activity thus allowing for seizure suppression that is fine-tuned on the individual scale (adaptive stimulation). By means of field potential recording from adult rat hippocampus-entorhinal cortex (EC) slices treated with the convulsant drug 4-aminopyridine we determined the effectiveness of this approach compared to low-frequency periodic pacing, and found that the closed-loop stimulation strategy: (i) has similar efficacy as low-frequency periodic pacing in suppressing ictal-like events but (ii) is more efficient than periodic pacing in that it requires less electrical pulses. We also provide evidence that the closed-loop stimulation strategy can alternatively be employed to tune the frequency of a periodic pacing strategy. Our findings indicate that the adaptive stimulation strategy may represent a novel, promising approach to DBS for individually-tailored epilepsy treatment.
01 Pubblicazione su rivista::01a Articolo in rivista
Adaptive control of epileptiform excitability in an in vitro model of limbic seizures / Panuccio, G; Guez, A; Vincent, R; Avoli, Massimo; Pineau, J.. - In: EXPERIMENTAL NEUROLOGY. - ISSN 0014-4886. - STAMPA. - 241:(2013), pp. 179-183. [10.1016/j.expneurol.2013.01.002]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/675728
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 20
social impact